Relaxation of Shannon entropy for trapped interacting bosons with dipolar interactions

被引:7
|
作者
Bera, Sangita [1 ]
Haldar, Sudip Kumar [2 ,3 ,4 ]
Chakrabarti, Barnali [1 ,5 ]
Trombettoni, Andrea [6 ,7 ,8 ]
Kota, V. K. B. [9 ]
机构
[1] Presidency Univ, Phys Dept, 86-1 Coll St, Kolkata 700073, India
[2] SRM Univ Delhi NCR, Dept Phys, Plot 39, Rajiv Gandhi Educ City 131029, Sonipat, India
[3] Univ Haifa, Haifa Res Ctr Theoret Phys & Astrophys, IL-3498838 Haifa, Israel
[4] Univ Haifa, Dept Math, IL-3498838 Haifa, Israel
[5] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[6] CNR IOM DEMOCRITOS Simulat Ctr, Via Bonomea 265, I-34136 Trieste, Italy
[7] Scuola Int Studi Avanzati SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[8] INFN, Sez Trieste, Via Bonomea 265, I-34136 Trieste, Italy
[9] Phys Res Lab, Ahmadabad 380009, Gujarat, India
来源
EUROPEAN PHYSICAL JOURNAL D | 2020年 / 74卷 / 04期
关键词
Cold Matter and Quantum Gas; FINITE FERMI SYSTEMS; BOSE-EINSTEIN CONDENSATION; TIME-RESOLVED OBSERVATION; INFORMATION ENTROPY; STATISTICAL-THEORY; QUANTUM-THEORY; SPIN CHAINS; MEAN-FIELD; THERMALIZATION; PHASE;
D O I
10.1140/epjd/e2020-100358-5
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the quantum many-body dynamics and entropy production triggered by an interaction quench of few dipolar bosons in an external harmonic trap. We solve the time-dependent many-body Schrodinger equation by using an in-principle numerically exact many-body method called the multiconfigurational time-dependent Hartree method for bosons (MCTDHB). We study the dynamical measures with high level of accuracy. We monitor the time evolution of the occupation in the natural orbitals and normalized first- and second-order Glauber's correlation functions. In particular, we focus on the relaxation dynamics of the Shannon entropy. Comparison with the corresponding results for contact interactions is presented. We observe significant effects coming from the presence of the non-local part of the dipolar interaction. The relaxation process is very fast for dipolar bosons with a clear signature of a truly saturated maximum entropy state. We also discuss the connection between the entropy production and the occurrence of correlations and loss of coherence in the system. We identify the long-time relaxed state as a many-body state retaining only diagonal correlations in the first-order correlation function and building up anti-bunching effect in the second-order correlation function.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Relaxation of Shannon entropy for trapped interacting bosons with dipolar interactions
    Sangita Bera
    Sudip Kumar Haldar
    Barnali Chakrabarti
    Andrea Trombettoni
    V. K. B. Kota
    The European Physical Journal D, 2020, 74
  • [2] Correlated many-body calculation to study characteristics of Shannon information entropy for ultracold trapped interacting bosons
    Haldar, Sudip Kumar
    Chakrabarti, Barnali
    Das, Tapan Kumar
    Biswas, Anindya
    PHYSICAL REVIEW A, 2013, 88 (03):
  • [3] Droplets of Trapped Quantum Dipolar Bosons
    Macia, A.
    Sanchez-Baena, J.
    Boronat, J.
    Mazzanti, F.
    PHYSICAL REVIEW LETTERS, 2016, 117 (20)
  • [4] Localization of Relative Entropy in Bose-Einstein Condensation of Trapped Interacting Bosons
    Morato, Laura M.
    Ugolini, Stefania
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VII, 2013, 67 : 197 - 210
  • [5] COLLECTIVE MODES OF TRAPPED INTERACTING BOSONS
    Gnanapragasam, G.
    Das, M. P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (25-26): : 4349 - 4357
  • [6] COLLECTIVE MODES OF TRAPPED INTERACTING BOSONS
    Gnanapragasam, G.
    Das, M. P.
    CONDENSED MATTER THEORIES, VOL 23, 2009, : 61 - 69
  • [7] Fermionized Dipolar Bosons Trapped in a Harmonic Trap
    Przemysław Kościk
    Few-Body Systems, 2017, 58
  • [8] Ultracold dipolar bosons trapped in atomtronic circuits
    Rovirola, Marc
    Briongos-Merino, Hector
    Julia-Diaz, Bruno
    Guilleumas, Montserrat
    PHYSICAL REVIEW A, 2024, 109 (06)
  • [9] Fermionized Dipolar Bosons Trapped in a Harmonic Trap
    Koscik, Przemyslaw
    FEW-BODY SYSTEMS, 2017, 58 (02)
  • [10] Thermodynamics of trapped interacting bosons in one dimension
    Gu, SJ
    Li, YQ
    Ying, ZJ
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (02) : 765 - 772