New analogues of the Filbert and Lilbert matrices via products of two k-tuples asymmetric entries

被引:1
|
作者
Kilic, Emrah [1 ]
Omur, Nese [2 ]
Koparal, Sibel [2 ]
机构
[1] TOBB Univ Econ & Technol, Dept Math, TR-06560 Ankara, Turkey
[2] Kocaeli Univ, Dept Math, TR-41380 Kocaeli, Turkey
来源
关键词
generalized Filbert matrix; q-analogues; LU-decomposition; Zeilberger's algorithm; computer algebra system (CAS); GENERALIZED FIBONACCI MATRIX; DETERMINANT;
D O I
10.15672/hujms.473495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present new analogues of the Filbert and Lilbert matrices via products of two k-tuples asymmetric entries consist of the Fibonacci and Lucas numbers. We shall derive explicit formulae for their LU-decompositions and inverses. To prove the claimed results, we write all the identities to be proven in q-word and then use the celebrated Zeilberger algorithm to prove required q-identities.
引用
收藏
页码:684 / 694
页数:11
相关论文
共 3 条
  • [1] NEW FILBERT AND LILBERT MATRICES WITH ASYMMETRIC ENTRIES
    Bozdag, Hacer
    Kilic, Emrah
    Akkus, Ilker
    [J]. MATHEMATICA SLOVACA, 2020, 70 (02) : 289 - 296
  • [2] New asymmetric generalizations of the Filbert and Lilbert matrices
    Emrah Kılıç
    Sibel Koparal
    Neşe Ömür
    [J]. Periodica Mathematica Hungarica, 2019, 78 : 231 - 241
  • [3] New asymmetric generalizations of the Filbert and Lilbert matrices
    Kilic, Emrah
    Koparal, Sibel
    Omur, Nese
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2019, 78 (02) : 231 - 241