Asymptotic expansions and approximations for the Caputo derivative

被引:5
|
作者
Dimitrov, Yuri [1 ]
Miryanov, Radan [2 ]
Todorov, Venelin [3 ,4 ]
机构
[1] Univ Forestry, Dept Math & Phys, Sofia 1756, Bulgaria
[2] Univ Econ, Dept Stat & Appl Math, Varna 9002, Bulgaria
[3] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Bl 8, BU-1113 Sofia, Bulgaria
[4] Bulgarian Acad Sci, Inst Informat & Commun Technol, Acad G Bonchev Str,Bl 25A, BU-1113 Sofia, Bulgaria
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 04期
关键词
Binomial coefficient; Asymptotic expansion; Approximation of the Caputo derivative; Numerical solution; FRACTIONAL DIFFUSION EQUATION; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; CALCULUS; SCHEME;
D O I
10.1007/s40314-018-0641-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the asymptotic expansions of the binomial coefficients and the weights of the L1 approximation to obtain approximations of order and second-order approximations of the Caputo derivative by modifying the weights of the shifted Grunwald-Letnikov difference approximation and the L1 approximation of the Caputo derivative. A modification of the shifted Grunwald-Letnikov approximation is obtained which allows second-order numerical solutions of fractional differential equations with arbitrary values of the solutions and their first derivatives at the initial point.
引用
收藏
页码:5476 / 5499
页数:24
相关论文
共 50 条