Equatorial inertial instability with full Coriolis force
被引:8
|
作者:
Kloosterziel, R. C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hawaii, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USAUniv Hawaii, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA
Kloosterziel, R. C.
[1
]
Carnevale, G. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USAUniv Hawaii, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA
Carnevale, G. F.
[2
]
Orlandi, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Meccan & Aeronaut, Via Eudossiana 18, I-00184 Rome, ItalyUniv Hawaii, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA
Orlandi, P.
[3
]
机构:
[1] Univ Hawaii, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA
[2] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[3] Univ Roma La Sapienza, Dipartimento Meccan & Aeronaut, Via Eudossiana 18, I-00184 Rome, Italy
The zonally symmetric inertial instability of oceanic near-equatorial flows is studied through high-resolution numerical simulations. In homogeneous upper layers, the instability of surface-confined westward currents implies potentially fast downward mixing of momentum with a predictable final equilibrium. With increasing Reynolds number, latitudinal scales along the surface associated with the instability become ever smaller and initially the motions are ever more concentrated underneath the surface. The results suggest that even if the upper layer is stratified, it may still be necessary to include the full Coriolis force in the dynamics rather than use the traditional beta-plane approximation.