Cosmic microwave background temperature and polarization pseudo-Cl estimators and covariances

被引:95
|
作者
Brown, ML [1 ]
Castro, PG [1 ]
Taylor, AN [1 ]
机构
[1] Univ Edinburgh, Royal Observ, Astron Inst, Edinburgh EH9 3HJ, Midlothian, Scotland
关键词
methods : data analysis; methods : statistical; cosmic microwave background; large-scale structure of Universe;
D O I
10.1111/j.1365-2966.2005.09111.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop the pseudo-C-l method for reconstructing the cosmic microwave background (CMB) temperature and polarization auto- and cross-power spectra, and estimate the pseudo-C-l covariance matrix for a realistic experiment on the cut sky. We calculate the full coupling equations for all six possible CMB power spectra, relating the observed pseudo-C-l values to the underlying all-sky C-l values, and test the reconstruction on both full-sky and cut-sky simulated CMB data sets. In particular we consider the reconstruction of the C-l from upcoming ground-based polarization experiments covering areas of a few hundred deg(2) and find that the method is fast, unbiased and performs well over a wide range of multipoles from l = 2 to l = 2500. We then calculate the full covariance matrix between the modes of the pseudo-temperature and polarization power spectra, assuming that the underlying CMB fields are Gaussian randomly distributed. The complexity of the covariance matrix prohibits its rapid calculation, required for parameter estimation. Hence we present an approximation for the covariance matrix in terms of convolutions of the underlying power spectra. The coupling matrices in these expressions can be estimated by fitting to numerical simulations, circumventing direct and slow calculation, and further, inaccurate analytic approximations. We show that these coupling matrices are mostly independent of cosmology, and that the full covariance matrix for all six pseudo-C-l power spectra can be quickly and accurately calculated for any given cosmological model using this method. We compare these semi-analytic covariance matrices against simulations and find good agreement, the accuracy of which depends mainly on survey area and the range of cosmological parameters considered.
引用
收藏
页码:1262 / 1280
页数:19
相关论文
共 50 条
  • [1] Pure pseudo-Cl estimators for CMB B-modes
    Smith, Kendrick M.
    [J]. NEW ASTRONOMY REVIEWS, 2006, 50 (11-12) : 1025 - 1029
  • [2] Disconnected pseudo-Cl covariances for projected large-scale structure data
    Garcia-Garcia, Carlos
    Alonso, David
    Bellini, Emilio
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (11):
  • [3] Pseudo-Cl estimators which do not mix E and B modes
    Smith, Kendrick M.
    [J]. PHYSICAL REVIEW D, 2006, 74 (08):
  • [4] Dipole modulation of cosmic microwave background temperature and polarization
    Ghosh, Shamik
    Kothari, Rahul
    Jain, Pankaj
    Rath, Pranati K.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (01):
  • [5] Polarization of the cosmic microwave background
    Hedman, M
    [J]. AMERICAN SCIENTIST, 2005, 93 (03) : 236 - 243
  • [6] Cosmic microwave background polarization
    Bartlett, James G.
    [J]. TAUP 2005: PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, 2006, 39 : 1 - 8
  • [7] Polarization in the cosmic microwave background
    Bartlett, James G.
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2006, 36 (4A) : 1124 - 1129
  • [8] Polarization of the cosmic microwave background
    Ng, KW
    [J]. COSMIC MICROWAVE BACKGROUND AND LARGE SCALE STRUCTURE OF THE UNIVERSE, 1998, 151 : 22 - 27
  • [10] Making cosmic microwave background temperature and polarization maps with MADAM
    Keihanen, E.
    Keskitalo, R.
    Kurki-Suonio, H.
    Poutanen, T.
    Sirvio, A-S.
    [J]. ASTRONOMY & ASTROPHYSICS, 2010, 510