Unscented Bayes Methods for Hierarchical Gaussian Processes

被引:0
|
作者
Wang, Mingliang [1 ]
Jacobsen, Elling W. [1 ]
Chotteau, Veronique [2 ]
Hjalmarsson, Hakan [1 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Dept Decis & Control Syst, Brinellvagen 8, S-11428 Stockholm, Sweden
[2] KTH Royal Inst Technol, Sch Biotechnol, Dept Ind Biotechnol Bioproc Design, Cell Technol Grp, Brinellvagen 8, S-11428 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
SYSTEMS; MODELS;
D O I
10.1109/ANZCC50923.2020.9318341
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an unscented Bayes method for hierarchical Gaussian processes. The hierarchical Gaussian process consists of multiple layers of Gaussian process, which leads to intractable marginal likelihood and posterior distributions. Instead of resorting to the traditional sampling approach, we use the unscented transform to compute the intractable quantities in a hierarchical model, which allows us to optimize the hyperparameters using a gradient based approach and to obtain the predictive distributions. We develop the proposed approach to different application scenarios. The performance of the proposed method is validated in two experiments with comparison to the state-of-art methods.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 50 条
  • [1] Extended and Unscented Gaussian Processes
    Steinberg, Daniel M.
    Bonilla, Edwin, V
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [2] EMPIRICAL BAYES RULES AND GAUSSIAN-PROCESSES
    STIJNEN, T
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1982, 6 (04) : 363 - 372
  • [3] Hierarchical modeling with Gaussian processes
    Menzefricke, U
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2000, 29 (04) : 1089 - 1108
  • [4] Mechanistic Hierarchical Gaussian Processes
    Wheeler, Matthew W.
    Dunson, David B.
    Pandalai, Sudha P.
    Baker, Brent A.
    Herring, Amy H.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (507) : 894 - 904
  • [5] ON THE STABILITY OF BAYES ESTIMATORS FOR GAUSSIAN-PROCESSES
    MCKEAGUE, IW
    [J]. ANNALS OF STATISTICS, 1984, 12 (04): : 1310 - 1323
  • [6] A COMPARISON OF HIERARCHICAL BAYES AND EMPIRICAL BAYES METHODS WITH A FORESTRY APPLICATION
    GREEN, EJ
    STRAWDERMAN, WE
    [J]. FOREST SCIENCE, 1992, 38 (02) : 350 - 366
  • [7] Hierarchical Bayes based Adaptive Sparsity in Gaussian Mixture Model
    Wang, Binghui
    Lin, Chuang
    Fan, Xin
    Jiang, Ning
    Farina, Dario
    [J]. PATTERN RECOGNITION LETTERS, 2014, 49 : 238 - 247
  • [8] General bounds on Bayes errors for regression with Gaussian processes
    Opper, M
    Vivarelli, F
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 302 - 308
  • [9] A Bayes formula for Gaussian noise processes and its applications
    Mandal, PK
    Mandrekar, V
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (03) : 852 - 871
  • [10] Hierarchical Bayes methods involving dependent condition states
    Maes, Marc A.
    Breitung, Karl W.
    [J]. APPLICATIONS OF STATISICS AND PROBABILITY IN CIVIL ENGINEERING, 2007, : 459 - 460