Real-time verification of al based rotor position estimation techniques for a 6/4 pole switched reluctance motor drive

被引:67
|
作者
Paramasivam, S. [1 ]
Vijayan, S.
Vasudevan, M.
Arumugam, R.
Krishnan, Rannt
机构
[1] ESAB Engn Serv Ltd, Sriperumbudur Taluk 602105, Kanchipuram, India
[2] Inst Rd & Transport Technol, Erode, India
[3] Vestas RRB India Ltd, Dept Res & Dev, Madras 600078, Tamil Nadu, India
[4] Anna Univ, Dept Elect Engn, Madras 600078, Tamil Nadu, India
[5] Virginia Tech, Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
关键词
adaptive neuro-fuzzy inference system (ANFIS); artificial neural network (ANN) based rotor position estimation; digital signal processor; sensorless operation; switched reluctance motor (SRM);
D O I
10.1109/TMAG.2006.888811
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents real-time verification of an artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) based rotor position estimation techniques for a 6/4 pole switched reluctance motor (SRM) drive system. The techniques estimate rotor position by measuring the three-phase voltages and currents and using magnetic characteristics of the SRM, with the aid of an ANN and ANFIS, in real-time environments. The rotor position estimating techniques are used in a high-performance sensorless variable speed SRM drive. A digital signal processor, TMS320F2812, executes the rotor position estimation. To verify the performance of the ANN and ANFIS based rotor position estimation techniques, a rotor position sensor is mounted with the drive system. The experimental results show that the ANN and ANFIS based rotor position estimation techniques provide good performance at different operating conditions.
引用
收藏
页码:3209 / 3222
页数:14
相关论文
共 50 条
  • [1] Rotor Position Estimation for a Sensorless Switched Reluctance Motor Drive with the Aid of Real Time Adaptive Filter
    Pavlitov, Constantin
    Tashev, Tasho
    Dimitrov, Anton
    Gorbounov, Yassen
    Rusinov, Radoslav
    [J]. 2014 16TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE AND EXPOSITION (PEMC), 2014, : 77 - 81
  • [2] Detection and Its Application of Real-time Rotor Position with High-precision for Switched Reluctance Motor Drive
    Cai, Yan
    Wen, Yanbin
    Wang, Chenhui
    Fan, Shaoxiong
    Jiang, Wentao
    [J]. AUTOMATIC CONTROL AND MECHATRONIC ENGINEERING II, 2013, 415 : 227 - 231
  • [3] Estimation of rotor position for switched reluctance motor at standstill
    Bamba, T.
    Komatsuzaki, A.
    Miki, I.
    [J]. 2007 POWER CONVERSION CONFERENCE - NAGOYA, VOLS 1-3, 2007, : 233 - +
  • [4] Speed and Rotor Position Estimation of Switched Reluctance Motor
    Brandstetter, Pavel
    Krna, Petr
    Dobrovsky, Marek
    [J]. PROCEEDINGS OF THE 12TH INTERNATIONAL SCIENTIFIC CONFERENCE ELECTRIC POWER ENGINEERING 2011, 2011, : 291 - 294
  • [5] Rotor Position Estimation of Switched Reluctance Motor Based on Subregional Inductance
    Cai H.
    Han Y.
    [J]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2023, 43 (18): : 7288 - 7297
  • [6] Fuzzy logic rotor position estimation based switched reluctance motor DSP drive with accuracy enhancement
    Cheok, AD
    Wang, ZF
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2005, 20 (04) : 908 - 921
  • [7] Implementation of digital controller for a 6/4 pole switched reluctance motor drive
    Paramasivam, S
    Arumugam, R
    Balamurugan, S
    [J]. TENCON 2004 - 2004 IEEE REGION 10 CONFERENCE, VOLS A-D, PROCEEDINGS: ANALOG AND DIGITAL TECHNIQUES IN ELECTRICAL ENGINEERING, 2004, : C464 - C467
  • [8] A novel rotor position estimation approach for an 8/6 solid rotor switched reluctance motor
    L. Jessi Sahaya Shanthi
    R. Arumugam
    Y. K. Taly
    [J]. Neural Computing and Applications, 2012, 21 : 461 - 468
  • [9] A novel rotor position estimation approach for an 8/6 solid rotor switched reluctance motor
    Shanthi, L. Jessi Sahaya
    Arumugam, R.
    Taly, Y. K.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2012, 21 (03): : 461 - 468
  • [10] Artificial intelligence-based rotor position estimation for a 6/4 pole switched reluctance machine from phase inductance
    Susitra, D.
    Paramasivam, S.
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2014, 22 (01) : 68 - 79