Structural target-aware model for thermal infrared tracking

被引:17
|
作者
Yuan, Di [1 ,4 ]
Shu, Xiu [2 ]
Liu, Qiao [3 ,4 ]
He, Zhenyu [4 ]
机构
[1] Xidian Univ, Guangzhou Inst Technol, Guangzhou 510555, Peoples R China
[2] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
[3] Chongqing Normal Univ, Natl Ctr Appl Math Chongqing, Chongqing 401331, Peoples R China
[4] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal infrared tracking; Target-aware model; Structural weight; CORRELATION FILTERS; OBJECT TRACKING; SIAMESE NETWORK;
D O I
10.1016/j.neucom.2022.03.055
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Thermal InfraRed (TIR) target trackers are easy to be interfered by similar objects, while susceptible to the influence of the target occlusion. To solve these problems, we propose a structural target-aware model (STAMT) for the thermal infrared target tracking tasks. Specifically, the proposed STAMT tracker can learn a target-aware model, which can add more attention to the target area to accurately identify the target from similar objects. In addition, considering the situation that the target is partially occluded in the tracking process, a structural weight model is proposed to locate the target through the unoccluded reliable target part. Ablation studies show the effectiveness of each component in the proposed tracker. Without bells and whistles, the experimental results demonstrate that our STAMT tracker performs favorably against state-of-the-art trackers on PTB-TIR and LSOTB-TIR datasets.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 56
页数:13
相关论文
共 50 条
  • [1] Target-Aware Deep Tracking
    Li, Xin
    Ma, Chao
    Wu, Baoyuan
    He, Zhenyu
    Yang, Ming-Hsuan
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1369 - 1378
  • [2] Target-Aware Transformer Tracking
    Zheng, Yuhui
    Zhang, Yan
    Xiao, Bin
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 4542 - 4551
  • [3] TATrack: Target-aware transformer for object tracking
    Huang, Kai
    Chu, Jun
    Leng, Lu
    Dong, Xingbo
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [4] Target-Aware Fusion of Infrared and Visible Images
    Zhou, Yingjie
    Gao, Kun
    Dou, Zeyang
    Hua, Zizheng
    Wang, Hong
    [J]. IEEE ACCESS, 2018, 6 : 79039 - 79049
  • [5] Target-Aware State Estimation for Visual Tracking
    Zhou, Zikun
    Li, Xin
    Fan, Nana
    Wang, Hongpeng
    He, Zhenyu
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 2908 - 2920
  • [6] Target-Aware Correlation Filter Tracking in RGBD Videos
    Kuai, Yangliu
    Wen, Gongjian
    Li, Dongdong
    Xiao, Jingjing
    [J]. IEEE SENSORS JOURNAL, 2019, 19 (20) : 9522 - 9531
  • [7] Learning target-aware correlation filters for visual tracking
    Li, Dongdong
    Wen, Gongjian
    Kuai, Yangliu
    Xiao, Jingjing
    Porikli, Fatih
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 58 : 149 - 159
  • [8] Target-Aware Transformer for Satellite Video Object Tracking
    Lai, Pujian
    Zhang, Meili
    Cheng, Gong
    Li, Shengyang
    Huang, Xiankai
    Han, Junwei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 10
  • [9] A Target-Aware Fusion Framework for Infrared and Visible Images
    Zhang, Yingmei
    Lee, Hyo Jong
    [J]. IEEE ACCESS, 2023, 11 : 33666 - 33681
  • [10] TRACKING METHOD OF ONLINE TARGET-AWARE VIA SHRINKAGE LOSS
    Zhang, Jianwei
    Wang, He
    Zhang, Huanlong
    Wang, Jingchao
    Miao, Meng-en
    Wang, Jiandong
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2022, 18 (05): : 1395 - 1411