Min-max and robust polynomial optimization

被引:13
|
作者
Lasserre, J. B. [1 ]
机构
[1] CNRS, LAAS, Inst Math, F-31077 Toulouse 4, France
关键词
Polynomial optimization; Min-max optimization; Robust optimization; Semidefinite relaxations; GLOBAL OPTIMIZATION; RELAXATIONS; SPARSITY; MOMENTS;
D O I
10.1007/s10898-010-9628-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the robust (or min-max) optimization problem J* := max(y is an element of Omega) min(x) {f (x, y) : (x, y) is an element of Delta} where f is a polynomial and Delta subset of R(n) x R(p) as well as Omega subset of R(p) are compact basic semi- algebraic sets. We first provide a sequence of polynomial lower approximations (J(i)) subset of R [ y] of the optimal value function J (y) := minx{f (x, y) : (x, y) is an element of Delta}. The polynomial J(i) is an element of R [y] is obtained from an optimal (or nearly optimal) solution of a semidefinite program, the ith in the " joint+ marginal" hierarchy of semidefinite relaxations associated with the parametric optimization problem y bar right arrow J (y), recently proposed in Lasserre (SIAM J Optim 20, 1995- 2022, 2010). Then for fixed i, we consider the polynomial optimization problem J(i)* := max(y){J(i) (y) : y is an element of Omega} and prove that (J) over cap (*)(i) (:= max(l=1,) (... , i) J(l)*) converges to J* as i -> infinity. Finally, for fixed l <= i, each J(l)* (and hence (J) over cap (i)*) can be approximated by solving a hierarchy of semidefinite relaxations as already described in Lasserre (SIAM J Optim 11, 796-817, 2001; Moments, Positive Polynomials and Their Applications. Imperial College Press, London 2009).
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] Min-max and robust polynomial optimization
    J. B. Lasserre
    [J]. Journal of Global Optimization, 2011, 51 : 1 - 10
  • [2] Pseudo-polynomial algorithms for min-max and min-max regret problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. Operations Research and Its Applications, 2005, 5 : 171 - 178
  • [3] Robust Asymmetric Recommendation via Min-Max Optimization
    Yang, Peng
    Zhao, Peilin
    Zheng, Vincent W.
    Ding, Lizhong
    Gao, Xin
    [J]. ACM/SIGIR PROCEEDINGS 2018, 2018, : 1077 - 1080
  • [4] Min-max and min-max regret versions of combinatorial optimization problems: A survey
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (02) : 427 - 438
  • [5] MIN-MAX BIAS ROBUST REGRESSION
    MARTIN, RD
    YOHAI, VJ
    ZAMAR, RH
    [J]. ANNALS OF STATISTICS, 1989, 17 (04): : 1608 - 1630
  • [6] Scenario relaxation algorithm for finite scenario-based min-max regret and min-max relative regret robust optimization
    Assavapokee, Tiravat
    Realff, Matthew J.
    Ammons, Jane C.
    Hong, I-Hsuan
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (06) : 2093 - 2102
  • [7] Approximation and resolution of min-max and min-max regret versions of combinatorial optimization problems
    Aissi H.
    [J]. 4OR, 2006, 4 (4) : 347 - 350
  • [8] Min-max regret robust optimization approach on interval data uncertainty
    Assavapokee, T.
    Realff, M. J.
    Ammons, J. C.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 137 (02) : 297 - 316
  • [9] Approximation of min-max and min-max regret versions of some combinatorial optimization problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 179 (02) : 281 - 290
  • [10] Min-Max Regret Robust Optimization Approach on Interval Data Uncertainty
    T. Assavapokee
    M. J. Realff
    J. C. Ammons
    [J]. Journal of Optimization Theory and Applications, 2008, 137 : 297 - 316