Positive solutions for nonlinear periodic problems with concave terms

被引:7
|
作者
Aizicovici, Sergiu [2 ]
Papageorgiou, Nikolaos S. [3 ]
Staicu, Vasile [1 ]
机构
[1] Univ Aveiro, Dept Math, CIDMA, P-3810193 Aveiro, Portugal
[2] Ohio Univ, Dept Math, Athens, OH 45701 USA
[3] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
Concave and convex nonlinearities; C-condition; Mountain pass theorem; Local minimizer; Bifurcation-type theorem; Positive solution; NONTRIVIAL SOLUTIONS; LOCAL MINIMIZERS; MULTIPLICITY; EXISTENCE;
D O I
10.1016/j.jmaa.2011.04.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear periodic problem, driven by the scalar p-Laplacian, with a parametric concave term and a Caratheodory perturbation whose potential (primitive) exhibits a p-superlinear growth near +infinity, without satisfying the usual in such cases Ambrosetti-Rabinowitz condition. Using critical point theory and truncation techniques, we prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions as the parameter varies. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:866 / 883
页数:18
相关论文
共 50 条
  • [1] Positive Solutions for Nonlinear Robin Problems with Concave Terms
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    Winowski, Krzysztof
    [J]. JOURNAL OF CONVEX ANALYSIS, 2019, 26 (04) : 1145 - 1174
  • [2] Positive solutions for nonlinear Neumann problems with concave and convex terms
    Papageorgiou, Nikolaos S.
    Smyrlis, George
    [J]. POSITIVITY, 2012, 16 (02) : 271 - 296
  • [3] Positive solutions for nonlinear Neumann problems with concave and convex terms
    Nikolaos S. Papageorgiou
    George Smyrlis
    [J]. Positivity, 2012, 16 : 271 - 296
  • [4] Nonlinear resonant periodic problems with concave terms
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) : 342 - 364
  • [5] MULTIPLE SOLUTIONS FOR NONLINEAR DIRICHLET PROBLEMS WITH CONCAVE TERMS
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. MATHEMATICA SCANDINAVICA, 2013, 113 (02) : 206 - 247
  • [6] Positive solutions for nonlinear periodic problems
    Michael E. Filippakis
    Nikolaos S. Papageorgiou
    Vasile Staicu
    [J]. Positivity, 2008, 12 : 733 - 750
  • [7] Positive solutions for nonlinear periodic problems
    Filippakis, Michael E.
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. POSITIVITY, 2008, 12 (04) : 733 - 750
  • [8] Multiple positive solutions for nonlinear periodic problems
    Hu, Shouchuan
    Papageorgiou, Nikolas S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (12) : 3675 - 3687
  • [9] Periodic solutions of nonlinear problems with positive oriented periodic coefficients
    Marzantowicz, W
    [J]. VARIATIONAL AND TOPOLOGICAL METHODS IN THE STUDY OF NONLINEAR PHENOMENA, 2002, 49 : 43 - 63
  • [10] Existence of positive and of multiple solutions for nonlinear periodic problems
    Denkowski, Zdzislaw
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (10) : 2289 - 2314