Fabrication of high-aspect-ratio polymer microstructures and hierarchical textures using carbon nanotube composite master molds

被引:31
|
作者
Copic, Davor [1 ]
Park, Sei Jin [1 ]
Tawfick, Sameh [1 ]
De Volder, Michael F. L. [1 ,2 ,3 ]
Hart, A. John [1 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] IMEC, B-3001 Heverlee, Belgium
[3] KULeuven, B-3000 Louvain, Belgium
基金
美国国家科学基金会;
关键词
LITHOGRAPHY; MICRO;
D O I
10.1039/c0lc00724b
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) composites can be used as master molds for fabrication of high-aspect-ratio polymer microstructures having anisotropic nanoscale textures. The master molds are made by growth of vertically aligned CNT patterns, capillary densification of the CNTs using organic solvents, and capillary-driven infiltration of the CNT structures with SU-8. The composite master structures are then replicated in SU-8 using standard PDMS transfer molding methods. By this process, we fabricated a library of replicas including vertical micro-pillars, honeycomb lattices with sub-micron wall thickness and aspect ratios exceeding 50 : 1, and microwells with sloped sidewalls. This process enables batch manufacturing of polymer features that capture complex nanoscale shapes and textures, while requiring only optical lithography and conventional thermal processing.
引用
收藏
页码:1831 / 1837
页数:7
相关论文
共 50 条
  • [1] Fabrication of high-aspect-ratio hydrogel microstructures
    Tirumala, VR
    Divan, R
    Mancini, DC
    Caneba, GT
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2005, 11 (4-5): : 347 - 352
  • [2] Fabrication of high-aspect-ratio hydrogel microstructures
    V. R. Tirumala
    R. Divan
    D. C. Mancini
    G. T. Caneba
    [J]. Microsystem Technologies, 2005, 11 : 347 - 352
  • [3] Fabrication of high-aspect-ratio microstructures using excimer laser
    Tseng, AA
    Chen, YT
    Ma, KJ
    [J]. OPTICS AND LASERS IN ENGINEERING, 2004, 41 (06) : 827 - 847
  • [4] Fabrication of high-aspect-ratio metallic microstructures by microelectroforming using silver-coated polydimethylsiloxane molds with controllable wettability
    Zhou, Bo
    Xie, Longfei
    Wang, Tingli
    Su, Bo
    Meng, Junhu
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2024, 34 (02)
  • [5] Fabrication of high-aspect-ratio microstructures using SU8 photoresist
    G. Liu
    Y. Tian
    Y. Kan
    [J]. Microsystem Technologies, 2005, 11 : 343 - 346
  • [6] A novel fabrication method for suspended high-aspect-ratio microstructures
    Yang, YJ
    Kuo, WC
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (11) : 2184 - 2193
  • [7] Graphite membrane applied for high-aspect-ratio microstructures fabrication
    Yang, HH
    Chou, MC
    Wang, HJ
    Pan, CT
    Lin, JL
    [J]. PHOTOMASK AND NEXT-GENERATION LITHOGRAPHY MASK TECHNOLOGY VII, 2000, 4066 : 141 - 147
  • [8] Fabrication of high-aspect-ratio microstructures using SU8 photoresist
    Liu, G
    Tian, Y
    Kan, Y
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2005, 11 (4-5): : 343 - 346
  • [9] Fabrication of High-Aspect-Ratio Microstructures on Tetraacrylate/Acrylamide Monomers Using Synchrotron Radiation
    Derevyanko, D. I.
    Orlova, N. A.
    Shelkovnikov, V. V.
    Shundrina, I. K.
    Goldenberg, B. G.
    Korolkov, V. P.
    [J]. HIGH ENERGY CHEMISTRY, 2019, 53 (02) : 136 - 142
  • [10] Fabrication of High-Aspect-Ratio Microstructures on Tetraacrylate/Acrylamide Monomers Using Synchrotron Radiation
    D. I. Derevyanko
    N. A. Orlova
    V. V. Shelkovnikov
    I. K. Shundrina
    B. G. Goldenberg
    V. P. Korolkov
    [J]. High Energy Chemistry, 2019, 53 : 136 - 142