Identification of Alpine Glaciers in the Central Himalayas Using Fully Polarimetric L-Band SAR Data

被引:8
|
作者
Yao, Guo-Hui [1 ,2 ,3 ,4 ]
Ke, Chang-Qing [1 ,2 ,3 ,4 ]
Zhou, Xiaobing [5 ]
Lee, Hoonyol [6 ]
Shen, Xiaoyi [1 ,2 ,3 ,4 ]
Cai, Yu [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Univ, Sch Geog & Ocean Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Peoples R China
[3] Nanjing Univ, Key Lab Satellite Mapping Technol & Applicat, State Adm Surveying Mapping & Geoinformat China, Nanjing 210023, Peoples R China
[4] Nanjing Univ, Collaborat Innovat Ctr Novel Software Technol & I, Nanjing 210023, Peoples R China
[5] Univ Montana, Dept Geophys Engn, Montana Tech, Butte, MT 59701 USA
[6] Kangwon Natl Univ, Div Geol & Geophys, Chunchon 24341, South Korea
来源
基金
中国国家自然科学基金;
关键词
Synthetic aperture radar; Radar imaging; Rough surfaces; Surface roughness; Radar polarimetry; Remote sensing; Alpine glacier; local incidence angle; object-oriented segmentation; polarimetric decomposition; support vector machine (SVM); TARGET DECOMPOSITION-THEOREMS; SCATTERING MODEL; TIBETAN PLATEAU; SATELLITE DATA; WET SNOW; CLASSIFICATION; CALIBRATION; INVENTORY; DEBRIS; MOTION;
D O I
10.1109/TGRS.2019.2939430
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To study the applicability of full polarimetric synthetic aperture radar (SAR) data to identify alpine glaciers in the central Himalayas, six polarimetric decomposition methods were used to obtain 20 polarimetric characteristic parameters based on the Advanced Land Observing Satellite 2 (ALOS-2) Phased Array type L-band SAR (PALSAR) data. Object-oriented multiscale segmentation was performed on a Landsat 8 Operational Land Imager (OLI) image prior to classification, and the vector boundaries of different types of training samples were selected from the segmented results. We performed a support vector machine (SVM)-based classification on the characteristic parameters from each polarimetric decomposition. All 20 parameters were then screened and combined according to different requirements: the degree of separability of different types of training samples and the type of scattering mechanisms. The results show that the classification accuracy of the incoherent decomposition characteristics based on the covariance matrix is the best, reaching 87, and it can exceed 91 after adding the local incidence angle to the suite of classifiers. Eventually, more than 93 accuracy was achieved using a combination of multiple polarimetric parameters, which reduced the misclassification between bare ice and rock. We also analyzed the use of controlling factors on the accuracy of alpine glacier identification and found that the polarimetric information and aspect of the glacier surface are the most important factors. The former is the main basis for identification but the latter will confuse the feature distributions of different categories and cause misclassification.
引用
收藏
页码:691 / 703
页数:13
相关论文
共 50 条
  • [1] Monitoring the Subsurface of an Alpine Glacier Using Polarimetric SAR Observations at L-Band
    Parrella, Giuseppe
    Farinotti, Daniel
    Hajnsek, Irena
    Papathanassiou, Konstantinos P.
    [J]. 11TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2016), 2016, : 800 - 805
  • [2] An L-band fully polarimetric SAR system for vegetation classification
    Corucci, Linda
    Meta, Adriano
    Coccia, Alex
    [J]. 2015 IEEE 5TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2015, : 558 - 560
  • [3] Unsupervised classification of a central Italy landscape by polarimetric L-band SAR data
    Putignano, C
    Schiavon, G
    Solimini, D
    Trisasongko, B
    [J]. IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 1291 - 1294
  • [4] Extraction and evaluation of polarimetric signature of various crop types using C-band and L-band fully polarimetric SAR data
    Verma, Abhinav
    Haldar, Dipanwita
    [J]. 2020 IEEE INDIA GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (INGARSS), 2020, : 37 - 41
  • [5] Compensation of Background Ionospheric Effect on L-Band Geosynchronous SAR with Fully Polarimetric Data
    Guo, Wei
    Xiao, Peng
    Gao, Xincheng
    [J]. REMOTE SENSING, 2023, 15 (15)
  • [6] Building characterization using L-band polarimetric interferometric SAR data
    Guillaso, S
    Ferro-Famil, L
    Reigber, A
    Pottier, E
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, 2 (03) : 347 - 351
  • [7] Identification of glaciers using fully polarimetric SAR data based on deep-learning
    Fan, Jiyan
    Ke, Changqing
    Yao, Guohui
    Wang, Zifei
    [J]. National Remote Sensing Bulletin, 2023, 27 (09) : 2098 - 2113
  • [8] THE EFFECT OF FOREST FOLIAGE ON L-BAND POLARIMETRIC SAR DATA
    Kimura, Hiroshi
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5875 - 5878
  • [9] Estimation of snow density with L-band polarimetric SAR data
    Li, Z
    Guo, HD
    Shi, JC
    [J]. IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1757 - 1759
  • [10] A fully polarimetric L-band spaceborne SAR instrument targeting land applications
    Burbidge, GTA
    Simpson, DM
    Mathew, CH
    [J]. CEOS SAR WORKSHOP, 2000, 450 : 293 - 298