Neuro-symbolic XAI for Computational Drug Repurposing

被引:3
|
作者
Drance, Martin [1 ]
Boudin, Marina [1 ]
Mougin, Fleur [1 ]
Diallo, Gayo [1 ]
机构
[1] Univ Bordeaux, Team ERIAS, Inserm U1219, Bordeaux Populat Hlth Res Ctr, Bordeaux, France
关键词
Artificial Intelligence; XAI; Drug Repurposing; Knowledge Graph; Bioinformatics;
D O I
10.5220/0010714100003064
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Today in the health domain, the challenge is to build a more transparent artificial intelligence, less affected by the opacity intrinsic to the mathematical concepts it uses. Among the fields which use AI techniques, is drug development, and more specifically drug repurposing. DR involves finding a new indication for an existing drug. The hypotheses generated by DR techniques must be validated. Therefore, the mechanism of generation must be understood. In this paper, we describe the use of a state-of-the-art neuro-symbolic algorithm in order to explain the process of link prediction in a knowledge graph-based computational drug repurposing. Link prediction consists of generating hypotheses about the relationships between a known molecule and a given target. More specifically, the implemented approach allows to understand how the organization of data in a knowledge graph changes the quality of predictions.
引用
收藏
页码:220 / 225
页数:6
相关论文
共 50 条
  • [1] Neuro-Symbolic XAI: Application to Drug Repurposing for Rare Diseases
    Drance, Martin
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT III, 2022, : 539 - 543
  • [2] NEURO-SYMBOLIC PERFORMANCE COMPARISON
    Sathasivam, Saratha
    [J]. 2010 SECOND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONS: ICCEA 2010, PROCEEDINGS, VOL 1, 2010, : 3 - 5
  • [3] Neuro-symbolic artificial intelligence
    Sarker, Md Kamruzzaman
    Zhou, Lu
    Eberhart, Aaron
    Hitzler, Pascal
    [J]. AI COMMUNICATIONS, 2021, 34 (03) : 197 - 209
  • [4] The Neuro-Symbolic Code of Perception
    Velik, Rosemarie
    [J]. JOURNAL OF COGNITIVE SCIENCE, 2010, 11 (02) : 161 - 180
  • [5] Neuro-Symbolic Regression with Applications
    Makke, Nour
    Chawla, Sanjay
    [J]. BIG DATA ANALYTICS IN ASTRONOMY, SCIENCE, AND ENGINEERING, BDA 2022, 2023, 13830 : 38 - 50
  • [6] NSP:: A neuro-symbolic processor
    Burattini, E
    De Gregorio, M
    Ferreira, VMG
    França, FMG
    [J]. ARTIFICIAL NEURAL NETS PROBLEM SOLVING METHODS, PT II, 2003, 2687 : 9 - 16
  • [7] Neuro-symbolic artificial intelligence: a survey
    Bhuyan, Bikram Pratim
    Ramdane-Cherif, Amar
    Tomar, Ravi
    Singh, T.P.
    [J]. Neural Computing and Applications, 2024, 36 (21) : 12809 - 12844
  • [8] Neuro-Symbolic Hierarchical Rule Induction
    Glanois, Claire
    Jiang, Zhaohui
    Feng, Xuening
    Weng, Paul
    Zimmer, Matthieu
    Li, Dong
    Liu, Wulong
    Hao, Jianye
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [9] Neuro-Symbolic Models for Sentiment Analysis
    Kocon, Jan
    Baran, Joanna
    Gruza, Marcin
    Janz, Arkadiusz
    Kajstura, Michal
    Kazienko, Przemyslaw
    Korczynski, Wojciech
    Milkowski, Piotr
    Piasecki, Maciej
    Szolomicka, Joanna
    [J]. COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 667 - 681
  • [10] One Possibility of a Neuro-Symbolic Integration
    Samsonovich, Alexei, V
    [J]. BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES 2021, 2022, 1032 : 428 - 437