Investigation of Bifurcations in the Process Equation

被引:13
|
作者
Nazarimehr, Fahimeh [1 ]
Jafari, Sajad [1 ]
Golpayegani, Seyed Mohammad Reza Hashemi [1 ]
Kauffman, Louis H. [2 ]
机构
[1] Amirkabir Univ Technol, Dept Biomed Engn, Tehran 158754413, Iran
[2] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2017年 / 27卷 / 13期
基金
美国国家科学基金会;
关键词
Process equation; multistable; bifurcation; unifurcation; bios; unstable window; bio-periodic window; MULTISTABILITY; PATTERNS;
D O I
10.1142/S0218127417502017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper mathematically investigates the process equation. The process equation is a one-dimensional map A(k+1) = A(k)+g sin(A(k)). It can show multistable attractors and various dynamics such as period doubling, unifurcation, chaos, bios, unstable windows and bio- periodic windows with respect to the changing of its control parameter, g. Different dynamics and the reasons for their occurrence are investigated in this note.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Numerical investigation of D-bifurcations for a stochastic delay logistic equation
    Ford, NJ
    Norton, SJ
    STOCHASTICS AND DYNAMICS, 2005, 5 (02) : 211 - 222
  • [2] Infinite Process of Forward and Backward Bifurcations in the Logistic Equation with Two Delays
    Kashchenko, Ilia
    Kaschenko, Sergey
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2019, 22 (04): : 407 - 412
  • [3] Bifurcations and chaos in Duffing equation
    Zhang, Meng
    Yang, Jiang-ping
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (04): : 665 - 684
  • [4] Bifurcations and Chaos in Duffing Equation
    Meng Zhang Oriential Scientific and Technologic Institute Hunan Agriculture University Changsha 410081
    Acta Mathematicae Applicatae Sinica, 2007, (04) : 665 - 684
  • [5] On Bifurcations of an Ordinary Differential Equation
    LI Changpin College of Sciences Shanghai University Shanghai China
    Journal of Shanghai University, 2000, (S1) : 4 - 6
  • [6] Theory of Bifurcations of the Schrodinger Equation
    Boichuk, A. A.
    Pokutnyi, A. A.
    DIFFERENTIAL EQUATIONS, 2017, 53 (07) : 855 - 863
  • [7] Bifurcations and Chaos in Duffing Equation
    Meng Zhang
    Jiang-ping Yang
    Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 : 665 - 684
  • [8] Theory of bifurcations of the Schrödinger equation
    A. A. Boichuk
    A. A. Pokutnyi
    Differential Equations, 2017, 53 : 855 - 863
  • [9] Bifurcations in a Mathieu equation with cubic nonlinearities
    Ng, L
    Rand, R
    CHAOS SOLITONS & FRACTALS, 2002, 14 (02) : 173 - 181
  • [10] PERTURBED BIFURCATIONS IN THE BCS GAP EQUATION
    SPATHIS, PN
    SOERENSEN, MP
    LAZARIDES, N
    PHYSICAL REVIEW B, 1992, 45 (13): : 7360 - 7367