Another view of the maximum principle for infinite-horizon optimal control problems in economics

被引:20
|
作者
Aseev, S. M. [1 ,2 ,3 ]
Veliov, V. M. [4 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
[2] Lomonosov Moscow State Univ, Moscow, Russia
[3] Int Inst Appl Syst Anal, Laxenburg, Austria
[4] Vienna Univ Technol, Inst Stat & Math Methods Econ, Vienna, Austria
基金
奥地利科学基金会; 俄罗斯科学基金会;
关键词
optimal control; Pontryagin maximum principle; adjoint variables; transversality conditions; Ramsey model; optimal extraction of a non-renewable resource; TRANSVERSALITY CONDITIONS; NONSMOOTH; DUALITY; PRICES;
D O I
10.1070/RM9915
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors present their recently developed complete version of the Pontryagin maximum principle for a class of infinite-horizon optimal control problems arising in economics. The main distinguishing feature of the result is that the adjoint variable is explicitly specified by a formula analogous to the Cauchy formula for solutions of linear differential systems. In certain situations this formula implies the 'standard' transversality conditions at infinity. Moreover, it can serve as an alternative to them. Examples demonstrate the advantages of the proposed version of the maximum principle. In particular, its applications are considered to Halkin's example, to Ramsey's optimal economic growth model, and to a basic model for optimal extraction of a non-renewable resource. Also presented is an economic interpretation of the characterization obtained for the adjoint variable.
引用
收藏
页码:963 / 1011
页数:49
相关论文
共 50 条
  • [1] Infinite-horizon optimal control problems in economics
    Aseev, S. M.
    Besov, K. O.
    Kryazhimskiy, A. V.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2012, 67 (02) : 195 - 253
  • [2] NONSMOOTH MAXIMUM PRINCIPLE FOR INFINITE-HORIZON PROBLEMS
    YE, JJ
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 76 (03) : 485 - 500
  • [3] Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions
    S. M. Aseev
    V. M. Veliov
    [J]. Proceedings of the Steklov Institute of Mathematics, 2015, 291 : 22 - 39
  • [4] Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions
    Aseev, S. M.
    Veliov, V. M.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 291 : S22 - S39
  • [5] MAXIMUM PRINCIPLE FOR INFINITE-HORIZON OPTIMAL CONTROL PROBLEMS UNDER WEAK REGULARITY ASSUMPTIONS
    Aseev, S. M.
    Veliov, V. M.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (03): : 41 - 57
  • [6] PROBLEMS OF OPTIMAL INFINITE-HORIZON CONTROL
    PIUNOVSKIY, AB
    [J]. SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1990, 28 (06): : 65 - 71
  • [7] On infinite-horizon optimal control problems
    Effati, S
    Kamyad, V
    Kamyabi-Gol, RA
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (01): : 269 - 278
  • [8] A note on the sufficiency of the maximum principle for infinite horizon optimal control problems
    de Oliveira, Valeriano Antunes
    Silva, Geraldo Nunes
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2018, 39 (04): : 1573 - 1580
  • [9] The Pontryagin Maximum Principle for Nonlinear Optimal Control Problems with Infinite Horizon
    Tauchnitz, Nico
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 167 (01) : 27 - 48
  • [10] The Pontryagin Maximum Principle for Nonlinear Optimal Control Problems with Infinite Horizon
    Nico Tauchnitz
    [J]. Journal of Optimization Theory and Applications, 2015, 167 : 27 - 48