High-order entropy-conservative schemes and kinetic relations for van der Waals fluids

被引:32
|
作者
Chalons, C
LeFloch, PG
机构
[1] Off Natl Etud & Rech Aerosp, F-92322 Chatillon, France
[2] Ecole Polytech, Ctr Math Appl, CNRS, UMR 7641, F-91128 Palaiseau, France
关键词
hyperbolic; conservation law; entropy inequality; viscosity; capillarity; van der Waals; kinetic relation; difference scheme; high-order accurate; entropy conservative;
D O I
10.1006/jcph.2000.6690
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the mixed (hyperbolic-elliptic) system of two conservation laws modeling the dynamics of van der Waals fluids. Viscosity and capillarity effects are taken into account. We introduce a new class of semidiscrete high-order schemes which are entropy conservative (in the sense of Tadmor) when the viscosity is neglected and, otherwise, dissipate the associated mathematical entropy. Our numerical schemes generalize the works by E. Tadmor (1987. Math. Comput. 49, 91) and P. G. LeFloch and C. Rohde (2000, SIAM J.. Numer. Anal. 37. 2023) who proposed second-order and third-order entropy-conservative schemes, respectively. Following B. T. Hayes and P. G. LeFloch (1998, SIAM J. Numen Anal. 35, 2169). we demonstrate numerically that balanced viscosity and capillarity terms in van der Waals fluids may generate nonclassical shock waves or subsonic prppagating phase transitions. Such waves are undercompressive and do not satisfy standard entropy criteria. They must be characterized by a kinetic function. which we determine numerically in this paper from vanishing viscosity and capillarity. The kinetic relation is an efficient tool to discuss the interplay among the viscosity, capillarity, and discretization parameters in van der Waals fluids. (C) 2001 Academic Press.
引用
收藏
页码:184 / 206
页数:23
相关论文
共 50 条
  • [1] Van der Waals integration of artificial heterostructures and high-order superlattices
    Qi Qian
    Zhong Wan
    Xiangfeng Duan
    [J]. National Science Open, 2023, 2 (01) : 55 - 64
  • [2] High-order superlattices by rolling up van der Waals heterostructures
    Bei Zhao
    Zhong Wan
    Yuan Liu
    Junqing Xu
    Xiangdong Yang
    Dingyi Shen
    Zucheng Zhang
    Chunhao Guo
    Qi Qian
    Jia Li
    Ruixia Wu
    Zhaoyang Lin
    Xingxu Yan
    Bailing Li
    Zhengwei Zhang
    Huifang Ma
    Bo Li
    Xiao Chen
    Yi Qiao
    Imran Shakir
    Zeyad Almutairi
    Fei Wei
    Yue Zhang
    Xiaoqing Pan
    Yu Huang
    Yuan Ping
    Xidong Duan
    Xiangfeng Duan
    [J]. Nature, 2021, 591 : 385 - 390
  • [3] High-order superlattices by rolling up van der Waals heterostructures
    Zhao, Bei
    Wan, Zhong
    Liu, Yuan
    Xu, Junqing
    Yang, Xiangdong
    Shen, Dingyi
    Zhang, Zucheng
    Guo, Chunhao
    Qian, Qi
    Li, Jia
    Wu, Ruixia
    Lin, Zhaoyang
    Yan, Xingxu
    Li, Bailing
    Zhang, Zhengwei
    Ma, Huifang
    Li, Bo
    Chen, Xiao
    Qiao, Yi
    Shakir, Imran
    Almutairi, Zeyad
    Wei, Fei
    Zhang, Yue
    Pan, Xiaoqing
    Huang, Yu
    Ping, Yuan
    Duan, Xidong
    Duan, Xiangfeng
    [J]. NATURE, 2021, 591 (7850) : 385 - +
  • [4] High Entropy van der Waals Materials
    Ying, Tianping
    Yu, Tongxu
    Qi, Yanpeng
    Chen, Xiaolong
    Hosono, Hideo
    [J]. ADVANCED SCIENCE, 2022, 9 (30)
  • [5] NONCLASSICAL RIEMANN SOLVERS AND KINETIC RELATIONS III: A NONCONVEX HYPERBOLIC MODEL FOR VAN DER WAALS FLUIDS
    LeFloch, Philippe G.
    Mai Duc Thanh
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2000,
  • [6] Mapping of the Temperature-Entropy Diagrams of van der Waals Fluids
    Imre, Attila R.
    Kustan, Reka
    Groniewsky, Axel
    [J]. ENERGIES, 2020, 13 (06)
  • [7] High-order schemes for conservative or dissipative systems
    Matsuo, T
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 152 (1-2) : 305 - 317
  • [8] Renyi's Entropy, Statistical Order and van der Waals Gas
    Pennini, Flavia
    Plastino, Angelo
    [J]. ENTROPY, 2022, 24 (08)
  • [9] High-order conservative schemes for the nonlinear Dirac equation
    Li, Shu-Cun
    Li, Xiang-Gui
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (11) : 2355 - 2374
  • [10] High-order variational Lagrangian schemes for compressible fluids
    Fu, Guosheng
    Liu, Chun
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 491