Controllable Radiance Fields for Dynamic Face Synthesis

被引:0
|
作者
Zhuang, Peiye [1 ]
Ma, Liqian [2 ]
Koyejo, Sanmi [1 ,3 ]
Schwing, Alexander [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] ZMO AI Inc, Hangzhou, Zhejiang, Peoples R China
[3] Google Inc, Mountain View, CA USA
关键词
D O I
10.1109/3DV57658.2022.00075
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent work on 3D-aware image synthesis has achieved compelling results using advances in neural rendering. However, 3D-aware synthesis of face dynamics hasn't received much attention. Here, we study how to explicitly control generative model synthesis of face dynamics exhibiting non-rigid motion (e.g., facial expression change), while simultaneously ensuring 3D-awareness. For this we propose a Controllable Radiance Field (CoRF): 1) Motion control is achieved by embedding motion features within the layered latent motion space of a style-based generator; 2) To ensure consistency of background, motion features and subject-specific attributes such as lighting, texture, shapes, albedo, and identity, a face parsing net, a head regressor and an identity encoder are incorporated. On head image/video data we show that CoRFs are 3D-aware while enabling editing of identity, viewing directions, and motion.
引用
收藏
页码:646 / 656
页数:11
相关论文
共 50 条
  • [1] CoNeRF: Controllable Neural Radiance Fields
    Kania, Kacper
    Yi, Kwang Moo
    Kowalski, Marek
    Trzciniski, Tomasz
    Tagliasacchi, Andrea
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 18602 - 18611
  • [2] Robust Dynamic Radiance Fields
    Liu, Yu-Lun
    Gao, Chen
    Meuleman, Andreas
    Tseng, Hung-Yu
    Saraf, Ayush
    Kim, Changil
    Chuang, Yung-Yu
    Kopf, Johannes
    Huang, Jia-Bin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 13 - 23
  • [3] GsNeRF: Fast novel view synthesis of dynamic radiance fields
    Liu, Dezhi
    Wan, Weibing
    Fang, Zhijun
    Zheng, Xiuyuan
    COMPUTERS & GRAPHICS-UK, 2023, 116 : 491 - 499
  • [4] Regularizing Dynamic Radiance Fields with Kinematic Fields
    Im, Woobin
    Cha, Geonho
    Lee, Sebin
    Lee, Jumin
    Seon, Juhyeong
    Wee, Dongyoon
    Yoon, Sung-Eui
    COMPUTER VISION - ECCV 2024, PT XXXIX, 2025, 15097 : 312 - 328
  • [5] FENeRF: Face Editing in Neural Radiance Fields
    Sun, Jingxiang
    Wang, Xuan
    Zhang, Yong
    Li, Xiaoyu
    Zhang, Qi
    Liu, Yebin
    Wang, Jue
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7662 - 7672
  • [6] Surface-Aligned Neural Radiance Fields for Controllable 3D Human Synthesis
    Xu, Tianhan
    Fujita, Yasuhiro
    Matsumoto, Eiichi
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 15862 - 15871
  • [7] FDNeRF: Few-shot Dynamic Neural Radiance Fields for Face Reconstruction and Expression Editing
    Zhang, Jingbo
    Li, Xiaoyu
    Wan, Ziyu
    Wang, Can
    Liao, Jing
    PROCEEDINGS SIGGRAPH ASIA 2022, 2022,
  • [8] Reference-guided Controllable Inpainting of Neural Radiance Fields
    Mirzaei, Ashkan
    Aumentado-Armstrong, Tristan
    Brubaker, Marcus A.
    Kelly, Jonathan
    Levinshtein, Alex
    Derpanis, Konstantinos G.
    Gilitschenski, Igor
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 17769 - 17779
  • [9] NeRFFaceEditing: Disentangled Face Editing in Neural Radiance Fields
    Jiang, Kaiwen
    Chen, Shu-Yu
    Liu, Feng-Lin
    Fu, Hongbo
    Gao, Lin
    PROCEEDINGS SIGGRAPH ASIA 2022, 2022,
  • [10] ToRF: Time-of-Flight Radiance Fields for Dynamic Scene View Synthesis
    Attal, Benjamin
    Laidlaw, Eliot
    Gokaslan, Aaron
    Kim, Changil
    Richardt, Christian
    Tompkin, James
    O'Toole, Matthew
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,