Survival probabilities of history-dependent random walks

被引:14
|
作者
Keshet, U [1 ]
Hod, S
机构
[1] Weizmann Inst Sci, Fac Phys, IL-76100 Rehovot, Israel
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 04期
关键词
D O I
10.1103/PhysRevE.72.046144
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the dynamics of random walks with long-term memory (binary chains with long-range correlations) in the presence of an absorbing boundary. An analytically solvable model is presented, in which a dynamical phase transition occurs when the correlation strength parameter mu reaches a critical value mu(c). For strong positive correlations, mu >mu(c), the survival probability is asymptotically finite, whereas for mu <mu(c) it decays as a power law in time (chain length).
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Variable survival exponents in history-dependent random walks: Hard movable reflector
    Dickman, R
    Araujo, FF
    ben-Avraham, D
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2003, 33 (03) : 450 - 457
  • [2] Survival probabilities in time-dependent random walks
    Nakar, E
    Hod, S
    [J]. PHYSICAL REVIEW E, 2004, 70 (01): : 016116 - 1
  • [3] Current reversal and exclusion processes with history-dependent random walks
    Schulz, J. H. P.
    Kolomeisky, A. B.
    Frey, E.
    [J]. EPL, 2011, 95 (03)
  • [4] A model of discrete random walk with history-dependent transition probabilities
    Volf, Petr
    Kourim, Tomas
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (15) : 5173 - 5186
  • [5] Survival probabilities of weighted random walks
    Aurzada, Frank
    Baumgarten, Christoph
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2011, 8 : 235 - 258
  • [6] History-dependent random processes
    Clifford, Peter
    Stirzaker, David
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2093): : 1105 - 1124
  • [7] History-Dependent Random Discounting
    Higashi, Youichiro
    Hyogo, Kazuya
    Takeoka, Norio
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 965 - +
  • [8] A HISTORY-DEPENDENT RANDOM SEQUENCE DEFINED BY ULAM
    KAC, M
    [J]. ADVANCES IN APPLIED MATHEMATICS, 1989, 10 (03) : 270 - 277
  • [9] Survival probabilities in biased random walks: To restart or not to restart? That is the question
    Hod, Shahar
    [J]. ANNALS OF PHYSICS, 2020, 415
  • [10] SURVIVAL PROBABILITIES IN 3-DIMENSIONAL RANDOM-WALKS
    ZUMOFEN, G
    BLUMEN, A
    [J]. CHEMICAL PHYSICS LETTERS, 1981, 83 (02) : 372 - 375