Nonlinear bosonization of Fermi surfaces: The method of coadjoint orbits

被引:27
|
作者
Delacretaz, Luca, V [1 ,2 ]
Du, Yi-Hsien [1 ]
Mehta, Umang [1 ,3 ]
Dam Thanh Son [1 ,2 ,4 ]
机构
[1] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
[2] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA
[3] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[4] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 03期
基金
美国国家科学基金会;
关键词
NONRELATIVISTIC FERMIONS; DENSITY CORRELATIONS; GEOMETRICAL APPROACH; LOOPS; CANCELLATION; EXCITATIONS; STATES;
D O I
10.1103/PhysRevResearch.4.033131
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a method for bosonizing the Fermi surface based on the formalism of the coadjoint orbits. This allows one to parametrize the Fermi surface by a bosonic field that depends on the spacetime coordinates and on the position on the Fermi surface. The Wess-Zumino-Witten term in the effective action, governing the adiabatic phase acquired when the Fermi surface changes its shape, is completely fixed. As an effective field theory the action also involves a Hamiltonian, which contains, beside the kinetic energy and the Landau interaction, terms with arbitrary number of derivatives and fields. We show that the resulting local effective field theory captures both linear and nonlinear effects in Landau's Fermi liquid theory. The approach can be extended to incorporate spin degrees of freedom and the charge-2 fields corresponding to the BCS order parameter.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Towards Bosonization of Virasoro Coadjoint Orbits
    Anton Alekseev
    Olga Chekeres
    Donald R. Youmans
    Annales Henri Poincaré, 2024, 25 : 5 - 34
  • [2] Towards Bosonization of Virasoro Coadjoint Orbits
    Alekseev, Anton
    Chekeres, Olga
    Youmans, Donald R.
    ANNALES HENRI POINCARE, 2024, 25 (01): : 5 - 34
  • [3] Nonlinear flag manifolds as coadjoint orbits
    Haller, Stefan
    Vizman, Cornelia
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 58 (04) : 385 - 413
  • [4] Nonlinear flag manifolds as coadjoint orbits
    Stefan Haller
    Cornelia Vizman
    Annals of Global Analysis and Geometry, 2020, 58 : 385 - 413
  • [5] Classification of Coadjoint Orbits for Symplectomorphism Groups of Surfaces
    Kirillov, Ilia
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (07) : 6219 - 6251
  • [6] Weighted nonlinear flag manifolds as coadjoint orbits
    Haller, Stefan
    Vizman, Cornelia
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (05): : 1664 - 1694
  • [7] COADJOINT ORBITS OF SYMPLECTIC DIFFEOMORPHISMS OF SURFACES AND IDEAL HYDRODYNAMICS
    Izosimov, Anton
    Khesin, Boris
    Mousavi, Mehdi
    ANNALES DE L INSTITUT FOURIER, 2016, 66 (06) : 2385 - 2433
  • [8] Noncommutative Phase Spaces by Coadjoint Orbits Method
    Ngendakumana, Ancille
    Nzotungicimpaye, Joachim
    Todjihounde, Leonard
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [9] ON THE COMBINATORICS OF COADJOINT ORBITS
    KIRILLOV, AA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1993, 27 (01) : 62 - 64
  • [10] THE METHOD OF COADJOINT ORBITS - AN ALGORITHM FOR THE CONSTRUCTION OF INVARIANT ACTIONS
    DELIUS, GW
    VANNIEUWENHUIZEN, P
    RODGERS, VGJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (20): : 3943 - 3983