On quaternion algebras over some extensions of quadratic number fields

被引:0
|
作者
Acciaro, V [1 ]
Savin, D. [2 ]
Taous, M. [3 ]
Zekhnini, A. [4 ]
机构
[1] Univ G dAnnunzio, Dipartimento Econ, Viale Pindaro 42, I-65127 Pescara, Italy
[2] Transilvania Univ Brasov, Fac Math & Comp Sci, Iuliu Maniu St 50, Brasov 500091, Romania
[3] Moulay Ismail Univ, Fac Sci & Technol, Dept Math, Errachidia, Morocco
[4] Mohammed Premier Univ, Sci Fac, Dept Math, Oujda, Morocco
来源
关键词
Quaternion algebras; Quadratic fields; Dihedral extension; Hilbert class field;
D O I
10.1007/s40590-021-00365-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p and q be two positive primes, let l be an odd positive prime and let F be a quadratic number field. Let K be an extension of F of degree l such that K is a dihedral extension of Q, or else let K be an abelian l-extension of F unramified over F whenever l divides the class number of F. In this paper, we provide a complete characterization of division quaternion algebras H-K(p, q) over K.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] On quaternion algebras over some extensions of quadratic number fields
    V. Acciaro
    D. Savin
    M. Taous
    A. Zekhnini
    Boletín de la Sociedad Matemática Mexicana, 2021, 27
  • [2] Splitting quaternion algebras over quadratic number fields
    Kutas, Peter
    JOURNAL OF SYMBOLIC COMPUTATION, 2019, 94 : 173 - 182
  • [3] ON QUATERNION ALGEBRAS OVER THE COMPOSITE OF QUADRATIC NUMBER FIELDS
    Acciaro, Vincenzo
    Savin, Diana
    Taous, Mohammed
    Zekhnini, Abdelkader
    GLASNIK MATEMATICKI, 2021, 56 (01) : 63 - 78
  • [4] QUADRATIC-FORMS OVER QUADRATIC EXTENSIONS OF FIELDS WITH 2 QUATERNION ALGEBRAS
    CORDES, CM
    RAMSEY, JR
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (05): : 1047 - 1058
  • [5] A note on unramified quaternion extensions over quadratic number fields
    Nomura, A
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2002, 78 (06) : 80 - 82
  • [6] On quaternion algebras that split over specific quadratic number fields
    Acciaro, Vincenzo
    Savin, Diana
    Taous, Mohammed
    Zekhnini, Abdelkader
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (47): : 91 - 107
  • [7] On quaternion algebras that split over specific quadratic number fields
    Acciaro, Vincenzo
    Savin, Diana
    Taous, Mohammed
    Zekhnini, Abdelkader
    Italian Journal of Pure and Applied Mathematics, 2022, 47 : 91 - 107
  • [8] Transfer of quadratic forms and of quaternion algebras over quadratic field extensions
    Becher, Karim Johannes
    Grenier-Boley, Nicolas
    Tignol, Jean-Pierre
    ARCHIV DER MATHEMATIK, 2018, 111 (02) : 135 - 143
  • [9] Transfer of quadratic forms and of quaternion algebras over quadratic field extensions
    Karim Johannes Becher
    Nicolas Grenier-Boley
    Jean-Pierre Tignol
    Archiv der Mathematik, 2018, 111 : 135 - 143
  • [10] On extensions of number fields with given quadratic algebras and cohomologyOn extensions of number fields with given quadratic algebras...O. Hamza
    Oussama Hamza
    manuscripta mathematica, 2025, 176 (1)