Structures,magnetic, and thermal properties of Ln3MoO7 (Ln = La, Pr, Nd, Sm, and Eu)

被引:41
|
作者
Nishimine, H [1 ]
Wakeshima, M [1 ]
Hinatsu, Y [1 ]
机构
[1] Hokkaido Univ, Grad Sch Sci, Div Chem, Sapporo, Hokkaido 0600810, Japan
关键词
magnetic properties; lanthanide; molybdenum; oxide; magnetic susceptibility; specific heat; antiferromagnetic transition; structural phase transition; differential scanning calorimetry;
D O I
10.1016/j.jssc.2004.10.013
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Ternary lanthanide-molybdenum oxides Ln(3)MoO(7) (Ln = La, Pr, Nd, Sm, Eu) have been prepared. Their structures were determined by X-ray diffraction measurements. They crystallize in a superstructure of cubic fluorite and the space group is P2(1)2(1)2(1). The Mo ion is octahedrally coordinated by six oxygens and the slightly distorted octahedra share corners forming a zig-zag chain parallel to the b-axis. These compounds have been characterized by magnetic susceptibility and specific heat measurements. The La3MoO7 shows complex magnetic behavior at 150 and 380 K. Below these temperatures, there is a large difference in the temperature-dependence of the magnetic susceptibility measured under zero-field-cooled condition and under field-cooled condition. The Nd3MoO7 show a clear antiferromagnetic transition at 2.5K. From the susceptibility measurements, both Pr3MoO7 and Sm3MoO7 show the existence of magnetic anomaly at 8.0 and 2.5 K, respectively. The results of the specific heat measurements also show anomalies at the corresponding magnetic transition temperatures. The differential scanning calorimetry measurements indicate that two phase-transitions occur for any Ln(3)MoO(7) compound in the temperature range between 370 and 7 10 K. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1221 / 1229
页数:9
相关论文
共 50 条
  • [1] Crystal structures, magnetic and thermal properties of Ln3IrO7 (Ln = Pr, Nd, Sm, and Eu)
    Nishimine, H
    Wakeshima, M
    Hinatsu, Y
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2004, 177 (03) : 739 - 744
  • [2] Structures and magnetic properties of Ln3OsO7 (Ln = Pr, Nd, Sm)
    Plaisier, JR
    Drost, RJ
    IJdo, DJW
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2002, 169 (02) : 189 - 198
  • [3] A study of the magnetic and thermal properties of Ln3RuO7 (Ln = Sm, Eu)
    Harada, D
    Hinatsu, Y
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2001, 158 (02) : 245 - 253
  • [4] The crystal growth and magnetic properties of Ln2LiIrO6 (Ln = La, Pr, Nd, Sm, Eu)
    Mugavero, SJ
    Smith, MD
    zur Loye, HC
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (01) : 200 - 206
  • [5] Structure, thermodynamic, and magnetic properties of Ln4PdO7 with Ln = La, Nd, Sm, Eu, and Gd
    Andersson, M
    Grins, J
    Nygren, M
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 1999, 146 (02) : 428 - 436
  • [6] Magnetic properties of (Sr1.85Ln0.15)FeMoO6 with Ln = Sr, La, Ce, Pr, Nd, Sm and Eu
    Zhang, Qin
    Wang, Qing
    Sun, Zhencui
    Wang, Keyan
    [J]. ADVANCED MATERIALS, PTS 1-4, 2011, 239-242 : 3109 - 3112
  • [7] Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore
    Feng, J.
    Xiao, B.
    Wan, C. L.
    Qu, Z. X.
    Huang, Z. C.
    Chen, J. C.
    Zhou, R.
    Pan, W.
    [J]. ACTA MATERIALIA, 2011, 59 (04) : 1742 - 1760
  • [8] Cathodoluminescence properties of La2MoO6:Ln3+(Ln: Eu, Dy, and Sm) phosphors
    Ayvacikli, M.
    Kaynar, Umit H.
    Karabulut, Y.
    Garcia Guinea, J.
    Bulcar, K.
    Can, N.
    [J]. APPLIED RADIATION AND ISOTOPES, 2020, 166 (166)
  • [9] Magnetic and Electrical Properties of Ln(0.7)Ca(0.3)MnO(3) (Ln = Nd, Sm, La)
    Chon, Gom Bai
    Im, Hung Su
    Lee, Chan Gyu
    Koo, Bon Heun
    Lee, Sang M.
    Jung, Myung Hwa
    Jo, Young Hun
    [J]. KOREAN JOURNAL OF MATERIALS RESEARCH, 2007, 17 (04): : 203 - 206
  • [10] Structural and optoelectronic properties of CsLnZnTe3(Ln=La,Pr,Nd and Sm)
    Imad Khan
    Ihsan Ullah
    Izaz Ul Haq
    Akbar Ali
    A.Dahshan
    Zahid Ali
    Iftikhar Ahmad
    [J]. Journal of Rare Earths, 2023, 41 (03) : 388 - 396