Optimal stopping and Gittins' indices for piecewise deterministic evolution processes

被引:2
|
作者
Hongler, MO [1 ]
Dusonchet, F [1 ]
机构
[1] Ecole Polytech Fed Lausanne, IPM, DMT, CH-1015 Lausanne, Switzerland
关键词
dynamic allocation of jobs; optimal stopping; piecewise-deterministic processes; continuous time Gittins' indices;
D O I
10.1023/A:1011205206089
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the optimal stopping problem for a class of continuous time random evolutions described by stochastic differential equations with alternating renewal processes as noise sources. The exact solution of this stopping problem provides, in explicit form, an expression for the Gittins' indices needed to derive the optimal scheduling of a class of multi-armed bandit problems in continuous time. The underlying random processes to which the bandits' arms obey are random velocity models. Such processes are commonly used to describe, in the fluid limit, the random production flows delivered by failure prone machines.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 50 条
  • [1] Optimal Stopping and Gittins' Indices for Piecewise Deterministic Evolution Processes
    Max-Olivier Hongler
    Fabrice Dusonchet
    Discrete Event Dynamic Systems, 2001, 11 : 235 - 248
  • [2] NUMERICAL METHOD FOR OPTIMAL STOPPING OF PIECEWISE DETERMINISTIC MARKOV PROCESSES
    de Saporta, Benoite
    Dufour, Francois
    Gonzalez, Karen
    ANNALS OF APPLIED PROBABILITY, 2010, 20 (05): : 1607 - 1637
  • [3] Optimal stopping for measure-valued piecewise deterministic Markov processes
    Cloez, Bertrand
    De Saporta, Benoite
    Joubaud, Maud
    JOURNAL OF APPLIED PROBABILITY, 2020, 57 (02) : 497 - 512
  • [4] Optimal stopping for partially observed piecewise-deterministic Markov processes
    Brandejsky, Adrien
    de Saporta, Benoite
    Dufour, Francois
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (08) : 3201 - 3238
  • [5] APPROXIMATION FOR OPTIMAL STOPPING OF A PIECEWISE-DETERMINISTIC PROCESS.
    Costa, O.L.V.
    Davis, M.H.A.
    Mathematics of Control, Signals, and Systems, 1988, 1 (02) : 123 - 146
  • [6] Optimal control of a class of piecewise deterministic processes
    Annunziato, M.
    Borzi, A.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2014, 25 : 1 - 25
  • [7] Optimal impulsive control of piecewise deterministic Markov processes
    Dufour, F.
    Horiguchi, M.
    Piunovskiy, A. B.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2016, 88 (07): : 1073 - 1098
  • [8] Dynamics and density evolution in piecewise deterministic growth processes
    Mackey, Michael C.
    Tyran-Kaminska, Marta
    ANNALES POLONICI MATHEMATICI, 2008, 94 (02) : 111 - 129
  • [9] Explicit Gittins indices for a class of superdiffusive processes
    Filliger, Roger
    Hongler, Max-Olivier
    JOURNAL OF APPLIED PROBABILITY, 2007, 44 (02) : 554 - 559
  • [10] OPTIMAL CONTROL OF PARTIALLY OBSERVABLE PIECEWISE DETERMINISTIC MARKOV PROCESSES
    Bauerle, Nicole
    Lange, Dirk
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) : 1441 - 1462