Decomposition and analysis of process variability using constrained principal component analysis

被引:13
|
作者
Cho, Choongyeun [1 ]
Kim, Daeik D. [1 ]
Kim, Jonghae [1 ]
Plouchart, Jean-Olivier [2 ]
Lim, Daihyun [3 ]
Cho, Sangyeun [4 ]
Trzcinski, Robert [2 ]
机构
[1] IBM Semiconductor Res & Dev Ctr, Fishkill, NY 12533 USA
[2] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[3] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA
[4] Univ Pittsburgh, Dept Comp Sci, Pittsburgh, PA 15260 USA
关键词
decomposition; principal component analysis; process variation; statistical modeling; variability;
D O I
10.1109/TSM.2007.913192
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Process-induced variability has become a predominant limiter of performance and yield of IC products especially in a deep submicron technology. However, it is difficult to accurately model systematic process variability due to the complicated and interrelated nature of physical mechanisms of variation. In this paper, a simple and practical method is presented to decompose process variability using statistics of the measurements from manufacturing inline test structures without assuming any underlying model for process variation. The decomposition method utilizes a variant of principal component analysis and is able to reveal systematic variation signatures existing on a die-to-die and wafer-to-wafer scale individually. Experimental results show that the most dominant die-to-die variation and wafer-to-wafer variation represent 31% and 25% of the total variance of a large set of manufacturing inline parameters in 65-nm SOI CMOS technology. The process variation in RF circuit performance is also analyzed and shown to contain 66% of process variation obtained with manufacturing inline parameters.
引用
收藏
页码:55 / 62
页数:8
相关论文
共 50 条
  • [1] Principal component analysis using QR decomposition
    Sharma, Alok
    Paliwal, Kuldip K.
    Imoto, Seiya
    Miyano, Satoru
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (06) : 679 - 683
  • [2] Principal component analysis using QR decomposition
    Alok Sharma
    Kuldip K. Paliwal
    Seiya Imoto
    Satoru Miyano
    International Journal of Machine Learning and Cybernetics, 2013, 4 : 679 - 683
  • [3] Characterizing Variability of Modular Brain Connectivity with Constrained Principal Component Analysis
    Hirayama, Jun-ichiro
    Hyvarinen, Aapo
    Kiviniemi, Vesa
    Kawanabe, Motoaki
    Yamashita, Okito
    PLOS ONE, 2016, 11 (12):
  • [4] Constrained Generalised Principal Component Analysis
    Chojnacki, Wojciech
    van den Hengel, Anton
    Brooks, Michael J.
    VISAPP 2006: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2006, : 206 - +
  • [5] Constrained nonmetric principal component analysis
    Yamagishi Y.
    Tanioka K.
    Yadohisa H.
    Behaviormetrika, 2019, 46 (2) : 313 - 332
  • [6] A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
    Wise, BM
    Gallagher, NB
    Butler, SW
    White, DD
    Barna, GG
    JOURNAL OF CHEMOMETRICS, 1999, 13 (3-4) : 379 - 396
  • [7] Process monitoring using moving principal component analysis
    Kano, M
    Nagao, K
    Ohno, H
    Hasebe, S
    Hashimoto, I
    KAGAKU KOGAKU RONBUNSHU, 1999, 25 (06) : 998 - 1003
  • [8] Multivariate Process Capability Using Principal Component Analysis
    Shinde, R. L.
    Khadse, K. G.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2009, 25 (01) : 69 - 77
  • [9] Interpreting variability in global SST data using independent component analysis and principal component analysis
    Westra, Seth
    Brown, Casey
    Lall, Upmanu
    Koch, Inge
    Sharma, Ashish
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2010, 30 (03) : 333 - 346
  • [10] Using principal component analysis to understand the variability of PDS 456
    Parker, M. L.
    Reeves, J. N.
    Matzeu, G. A.
    Buisson, D. J. K.
    Fabian, A. C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (01) : 108 - 114