Altered development in GABA co-release shapes glycinergic synaptic currents in cultured spinal slices of the SOD1G93A mouse model of amyotrophic lateral sclerosis

被引:18
|
作者
Medelin, Manuela [1 ]
Rancic, Vladimir [1 ]
Cellot, Giada [1 ]
Laishram, Jummi [1 ]
Veeraraghavan, Priyadharishini [2 ]
Rossi, Chiara [3 ]
Muzio, Luca [3 ]
Sivilotti, Lucia [4 ]
Ballerini, Laura [1 ,2 ]
机构
[1] Univ Trieste, Dept Life Sci, Trieste, Italy
[2] Int Sch Adv Studies SISSA ISAS, Via Bonomea 265, I-34136 Trieste, Italy
[3] Ist Sci San Raffaele, Inst Expt Neurol INSPE, Div Neurosci, Neuroimmunol Unit, Milan, Italy
[4] UCL, Dept Neurosci Physiol & Pharmacol, London, England
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2016年 / 594卷 / 13期
关键词
MOTOR-NEURON DEGENERATION; SINGLE-CHANNEL PROPERTIES; IN-VITRO; INTRACELLULAR CHLORIDE; ORGANOTYPIC CULTURES; LOCOMOTOR NETWORKS; RECEPTOR CHANNELS; RODENT MODELS; DORSAL-HORN; RAT-BRAIN;
D O I
10.1113/JP272382
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Increased environmental risk factors in conjunction with genetic susceptibility have been proposed with respect to the remarkable variations in mortality in amyotrophic lateral sclerosis (ALS).In vitro models allow the investigation of the genetically modified counter-regulator of motoneuron toxicity and may help in addressing ALS therapy. Spinal organotypic slice cultures from a mutant form of human superoxide dismutase 1 (SOD1G93A) mouse model of ALS allow the detection of altered glycinergic inhibition in spinal microcircuits. This altered inhibition improved spinal cord excitability, affecting motor outputs in early SOD1(G93A) pathogenesis. Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurological disease characterized by a progressive degeneration of motoneurons (MNs). In a previous study, we developed organotypic spinal cultures from an ALS mouse model expressing a mutant form of human superoxide dismutase 1 (SOD1(G93A)). We reported the presence of a significant synaptic rearrangement expressed by these embryonic cultured networks, which may lead to the altered development of spinal synaptic signalling, which is potentially linked to the adult disease phenotype. Recent studies on the same ALS mouse model reported a selective loss of glycinergic innervation in cultured MNs, suggestive of a contribution of synaptic inhibition to MN dysfunction and degeneration. In the present study, we further exploit organotypic cultures from wild-type and SOD1(G93A) mice to investigate the development of glycine-receptor-mediated synaptic currents recorded from the interneurons of the premotor ventral circuits. We performed single cell electrophysiology, immunocytochemistry and confocal microscopy and suggest that GABA co-release may speed the decay of glycine responses altering both temporal precision and signal integration in SOD1(G93A) developing networks at the postsynaptic site. Our hypothesis is supported by the finding of an increased MN bursting activity in immature SOD1(G93A) spinal cords and by immunofluorescence microscopy detection of a longer persistence of GABA in SOD1(G93A) glycinergic terminals in cultured and ex vivo spinal slices. Increased environmental risk factors in conjunction with genetic susceptibility have been proposed with respect to the remarkable variations in mortality in amyotrophic lateral sclerosis (ALS).In vitro models allow the investigation of the genetically modified counter-regulator of motoneuron toxicity and may help in addressing ALS therapy. Spinal organotypic slice cultures from a mutant form of human superoxide dismutase 1 (SOD1G93A) mouse model of ALS allow the detection of altered glycinergic inhibition in spinal microcircuits. This altered inhibition improved spinal cord excitability, affecting motor outputs in early SOD1(G93A) pathogenesis.
引用
收藏
页码:3827 / 3840
页数:14
相关论文
共 50 条
  • [1] FATIGABILITY OF SPINAL REFLEX TRANSMISSION IN A MOUSE MODEL (SOD1G93A) OF AMYOTROPHIC LATERAL SCLEROSIS
    Schomburg, Eike D.
    Steffens, Heinz
    Zschuentzsch, Jana
    Dibaj, Payam
    Keller, Bernhard U.
    MUSCLE & NERVE, 2011, 43 (02) : 230 - 236
  • [2] Neuroprotective effect of bexarotene in the SOD1G93A mouse model of amyotrophic lateral sclerosis
    Riancho, Javier
    Ruiz-Soto, Maria
    Berciano, Maria T.
    Berciano, Jose
    Lafarga, Miguel
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2015, 9
  • [3] Retinal glial changes in SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis
    Ramirez, A. I.
    Salobrar-Garcia, E.
    Matamoros, J. A.
    Rojas, P.
    Fernandez Albarral, J. A.
    Lopez-Cuenca, I.
    Sanchez-Puebla, L.
    Elvira-Hurtado, L.
    Santos-Garcia, I.
    de lago, E.
    Ramirez, J. M.
    de Hoz, R.
    Salazar, J. J.
    GLIA, 2023, 71 : E443 - E444
  • [4] Gene Editing Therapy in a Humanized SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis
    Shi, Linyu
    Yang, Dong
    Xiao, Shenglin
    Yang, Hui
    MOLECULAR THERAPY, 2023, 31 (04) : 346 - 346
  • [5] Comparative study of behavioural tests in the SOD1G93A mouse model of amyotrophic lateral sclerosis
    Olivan, Sara
    Cristina Calvo, Ana
    Rando, Amaya
    Jesus Munoz, Maria
    Zaragoza, Pilar
    Osta, Rosario
    EXPERIMENTAL ANIMALS, 2015, 64 (02) : 147 - 153
  • [6] Comparative morphometric analysis of microglia in the spinal cord of SOD1G93A transgenic mouse model of amyotrophic lateral sclerosis
    Ohgomori, Tomohiro
    Yamada, Jun
    Takeuchi, Hideyuki
    Kadomatsu, Kenji
    Jinno, Shozo
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2016, 43 (10) : 1340 - 1351
  • [7] Altered expression of the GPR17 receptor in the spinal cord of SOD1G93A mice, a model of amyotrophic lateral sclerosis
    Fumagalli, M.
    Bonfanti, E.
    Bonifacino, T.
    Milanese, M.
    Bonanno, G.
    Abbracchio, M. P.
    GLIA, 2017, 65 : E181 - E181
  • [8] Protective effects of Withania somnifera extract in SOD1G93A mouse model of amyotrophic lateral sclerosis
    Dutta, Kallol
    Patel, Priyanka
    Julien, Jean-Pierre
    EXPERIMENTAL NEUROLOGY, 2018, 309 : 193 - 204
  • [9] EXCITABILITY PROPERTIES OF MOUSE MOTOR AXONS IN THE MUTANT SOD1G93A MODEL OF AMYOTROPHIC LATERAL SCLEROSIS
    Boerio, Delphine
    Kalmar, Bernadett
    Greensmith, Linda
    Bostock, Hugh
    MUSCLE & NERVE, 2010, 41 (06) : 774 - 784
  • [10] Epothilone D accelerates disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis
    Clark, J. A.
    Blizzard, C. A.
    Breslin, M. C.
    Yeaman, E. J.
    Lee, K. M.
    Chuckowree, J. A.
    Dickson, T. C.
    NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 2018, 44 (06) : 590 - 605