Topology versus Anderson localization: Nonperturbative solutions in one dimension

被引:42
|
作者
Altland, Alexander [1 ]
Bagrets, Dmitry [1 ]
Kamenev, Alex [2 ,3 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Univ Minnesota, WI Fine Theoret Phys Inst, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 08期
关键词
QUANTUM HALL TRANSITION; SIGMA-MODEL; WIRES; SUPERCONDUCTORS; DELOCALIZATION; DISORDER; CHAINS;
D O I
10.1103/PhysRevB.91.085429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an analytic theory of quantum criticality in quasi-one-dimensional topological Anderson insulators. We describe these systems in terms of two parameters (g, chi) representing localization and topological properties, respectively. Certain critical values of chi (half-integer for Z classes, or zero for Z(2) classes) define phase boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit flow similar to the celebrated two-parameter flow of the integer quantum Hall insulator. However, unlike the quantum Hall system, an exact analytical description of the entire phase diagram can be given in terms of the transfer-matrix solution of corresponding supersymmetric nonlinear sigma models. In Z(2) classes we uncover a hidden supersymmetry, present at the quantum critical point.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Anderson localization versus delocalization of interacting fermions in one dimension
    Schmitteckert, P
    Schulze, T
    Schuster, C
    Schwab, P
    Eckern, U
    PHYSICAL REVIEW LETTERS, 1998, 80 (03) : 560 - 563
  • [2] A RIGOROUS REPLICA TRICK APPROACH TO ANDERSON LOCALIZATION IN ONE DIMENSION
    KLEIN, A
    MARTINELLI, F
    PEREZ, JF
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (04) : 623 - 633
  • [3] Metamaterials can suppress Anderson localization of light in one dimension
    Mogilevtsev, D.
    Pinheiro, F. A.
    dos Santos, R. R.
    Cavalcanti, S. B.
    Oliveira, L. E.
    METAMATERIALS VII, 2012, 8423
  • [4] ANDERSON LOCALIZATION FOR THE ALMOST MATHIEU EQUATION - A NONPERTURBATIVE PROOF
    JITOMIRSKAYA, SY
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) : 49 - 57
  • [5] Anderson localization and the topology of classifying spaces
    Morimoto, Takahiro
    Furusaki, Akira
    Mudry, Christopher
    PHYSICAL REVIEW B, 2015, 91 (23)
  • [6] ON THE UPPER CRITICAL DIMENSION IN ANDERSON LOCALIZATION
    CASTELLANI, C
    DICASTRO, C
    PELITI, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (17): : 1099 - 1103
  • [7] Interplay of disorder and point-gap topology: Chiral modes, localization, and non-Hermitian Anderson skin effect in one dimension
    Sarkar, Ronika
    Hegde, Suraj S.
    Narayan, Awadhesh
    PHYSICAL REVIEW B, 2022, 106 (01)
  • [8] Localization by bichromatic potentials versus Anderson localization
    Albert, Mathias
    Leboeuf, Patricio
    PHYSICAL REVIEW A, 2010, 81 (01):
  • [9] LOCALIZATION IN ONE DIMENSION
    ANDERECK, BS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 370 - 370
  • [10] Nonperturbative approach to Luttinger's theorem in one dimension
    Yamanaka, M
    Oshikawa, M
    Affleck, I
    PHYSICAL REVIEW LETTERS, 1997, 79 (06) : 1110 - 1113