Variable Step Block Hybrid Method for Stiff Chemical Kinetics Problems

被引:6
|
作者
Soomro, Hira [1 ]
Zainuddin, Nooraini [1 ]
Daud, Hanita [1 ]
Sunday, Joshua [2 ]
Jamaludin, Noraini [3 ]
Abdullah, Abdullah [4 ]
Apriyanto, Mulono [5 ]
Kadir, Evizal Abdul [6 ]
机构
[1] Univ Teknol PETRONAS, Dept Fundamental & Appl Sci, Fac Sci & Informat Technol, Seri Iskandar 32610, Perak, Malaysia
[2] Univ Jos, Fac Nat Sci, Dept Math, Jos 930003, Nigeria
[3] Univ Teknol PETRONAS, Ctr Fdn Studies, Seri Iskandar 32610, Perak, Malaysia
[4] Univ Islam Indragiri, Dept Informat Syst, Tembilahan 29281, Indonesia
[5] Univ Islam Indragiri, Dept Food Sci, Tembilahan 29281, Indonesia
[6] Univ Islam Riau, Fac Engn, Dept Informat Engn, Tembilahan 28284, Indonesia
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 09期
关键词
variable step hybrid block; stiff; chemical kinetics models; ode15s; BACKWARD DIFFERENTIATION FORMULA; NUMERICAL-SOLUTION; IMPLEMENTATION; EQUATIONS;
D O I
10.3390/app12094484
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Integration of a larger stiff system of initial value problems emerging from chemical kinetics models requires a method that is both efficient and accurate, with a large absolute stability region. To determine the solutions of the stiff chemical kinetics ordinary differential equations that help in explaining chemically reactive flows, a numerical integration methodology known as the 3-point variable step block hybrid method has been devised. An appropriate time step is automatically chosen to give accurate results. To check the efficiency of the new method, the numerical integration of a few renowned stiff chemical problems is evaluated such as Belousov-Zhabotinskii reaction and Hires, which are widely used in numerical studies. The results generated are then compared with the MATLAB stiff solver, ode15s.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Variable Step Hybrid Block Method for the Approximation of Kepler Problem
    Sunday, Joshua
    Shokri, Ali
    Marian, Daniela
    FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [2] A numerical method for reacting flows with multi-step, stiff chemical kinetics
    CFD Research Corporation, Huntsville
    AL, United States
    Jt. Propuls. Conf. exhib., 1600,
  • [3] A new variable step size block backward differentiation formula for solving stiff initial value problems
    Suleiman, M. B.
    Musa, H.
    Ismail, F.
    Senu, N.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (11) : 2391 - 2408
  • [4] An explicit one-step method for stiff problems
    Novati, P
    COMPUTING, 2003, 71 (02) : 133 - 151
  • [5] An Explicit One-Step Method for Stiff Problems
    P. Novati
    Computing, 2003, 71 : 133 - 151
  • [6] Algorithm Variable Order, Step and the Configuration Variables for Solving Stiff Problems
    Novikov, E. A.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2013, 13 (03): : 35 - 43
  • [7] A variable step-size implementation of the hybrid Nystrom method for integrating Hamiltonian and stiff differential systems
    Rufai, Mufutau Ajani
    Tran, Thanh
    Anastassi, Zacharias A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [8] Numerical solution of stiff boundary problems for heterogeneous chemical kinetics
    Shkadinskii, K.G.
    Ozerkovskaya, N.I.
    Chernetsova, V.V.
    Soviet Journal of Chemical Physics, 1993, 10 (10):
  • [9] Block Variable Order Step Size Method For Solving Higher Order Orbital Problems
    Rasedee, Ahmad Fadly Nurullah
    Ijam, Hazizah Mohd
    Sathar, Mohammad Hasan Abdul
    Ishak, Norizarina
    Nazri, Muhamad Azrin
    Kamarudin, Nur Shuhada
    Ramli, Nur Ainna
    13TH IMT-GT INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS AND THEIR APPLICATIONS (ICMSA2017), 2017, 1905
  • [10] Seventh order hybrid block method for solution of first order stiff systems of initial value problems
    O. A. Akinfenwa
    R. I. Abdulganiy
    B. I. Akinnukawe
    S. A. Okunuga
    Journal of the Egyptian Mathematical Society, 28 (1)