On the length scale dependence of microscopic strain by SANS

被引:24
|
作者
Westermann, S
Pyckhout-Hintzen, W
Richter, D
Straube, E
Egelhaaf, S
May, R
机构
[1] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
[2] Univ Halle Wittenberg, Fachbereich Phys, D-06099 Halle, Germany
[3] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France
关键词
D O I
10.1021/ma0014259
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We present a SANS study on the length scale dependence of chain deformation patterns in dense cross-linked elastomers. Three different polyisoprene networks of long primary block-copolymer chains of the HDH-type were analyzed. The total length of the primary chains is identical, while the length of the deuterated middle block was varied in order to cover several length scale regimes of interest. The scattering data are analyzed in the frame of the tube model of rubber elasticity in combination with the random phase approximation (RPA), which is used in order to account for the interchain correlations. We show experimentally that for the longest labeled path the rubber elastic response is dominated by both cross-link and entanglement contributions, whereas it is of clear phantomlike chain behavior if the labeled middle block of the chain is shorter than the distance between two successive entanglements, i.e., the tube diameter. We further propose schemes to quantify nonaffine deformations on various length scales and chain scissioning processes during the radical cross-linking process.
引用
收藏
页码:2186 / 2194
页数:9
相关论文
共 50 条
  • [1] The length-scale dependence of strain in networks by SANS
    W. Pyckhout-Hintzen
    A. Botti
    M. Heinrich
    S. Westermann
    D. Richter
    E. Straube
    Applied Physics A, 2002, 74 : s368 - s370
  • [2] The length-scale dependence of strain in networks by SANS
    Pyckhout-Hintzen, W
    Botti, A
    Heinrich, M
    Westermann, S
    Richter, D
    Straube, E
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (Suppl 1): : S368 - S370
  • [3] Enhanced Strain in Functional Nanoporous Gold with a Dual Microscopic Length Scale Structure
    Detsi, Eric
    Punzhin, Sergey
    Rao, Jiancun
    Onck, Patrick R.
    De Hosson, Jeff Th. M.
    ACS NANO, 2012, 6 (05) : 3734 - 3744
  • [4] Length-scale dependence of elastic strain from scattering measurements in metallic glasses
    Vempati, U. K.
    Valavala, P. K.
    Falk, M. L.
    Almer, J.
    Hufnagel, T. C.
    PHYSICAL REVIEW B, 2012, 85 (21)
  • [5] Generalized Aifantis strain gradient plasticity model with internal length scale dependence on grain size, sample size and strain
    Zhao, Jianfeng
    Zhang, Bo
    Liu, Dabiao
    Konstantinidis, Avraam A.
    Kang, Guozheng
    Zhang, Xu
    ACTA MECHANICA SINICA, 2022, 38 (03)
  • [6] The detection of local plastic strain in microscopic scale
    Li, Jian
    MATERIALS LETTERS, 2008, 62 (6-7) : 804 - 807
  • [7] Length-scale dependence in layered superconductors
    Nándori, I
    Vad, K
    Mészáros, S
    Hakl, J
    Sas, B
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 : D481 - D484
  • [8] THE LENGTH-SCALE DEPENDENCE OF SCALAR MIXING
    MELL, WE
    KOSALY, G
    RILEY, JJ
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (10): : 2474 - 2476
  • [9] Length Scale Dependence of DNA Mechanical Properties
    Noy, Agnes
    Golestanian, Ramin
    PHYSICAL REVIEW LETTERS, 2012, 109 (22)
  • [10] Evolution of the length scale in strain gradient plasticity
    Dahlberg, Carl F. O.
    Boasen, Magnus
    INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 112 : 220 - 241