Calculation of band structure and optical gain of type-II GaSbBi/GaAs quantum wells using 14-band K.p Hamiltonian

被引:19
|
作者
Mal, Indranil [1 ]
Samajdar, D. P. [2 ]
Das, T. D. [3 ]
机构
[1] Natl Inst Technol, Dept Elect & Comp Engn, Yupia 791112, Arunachal Prade, India
[2] PDPM Indian Inst Informat Technol Design & Mfg, Dept Elect & Commun Engn, Jabalpur 482005, Madhya Pradesh, India
[3] Natl Inst Technol, Dept Basic & Appl Sci, Yupia 791112, Arunachal Prade, India
关键词
VBAC; GaSbBi/GaAs; Quantum wells; k.p method; Compressive strain; Band gap; IMPURITY STATES; ALLOYS; PHOTOLUMINESCENCE; ABSORPTION; MODEL; HOLE; BI;
D O I
10.1016/j.spmi.2017.05.032
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The electronic band structure of strained GaSbBi/GaAs heterostructures are investigated using a 14 band k.p Hamiltonian which is an extended form of the 12 band Valance band Anticrossing (VBAC) matrix. The shift in the valence and conduction sub bands due to the incorporation of Bi in GaSb/GaAs Type II system are calculated and compared with the available experimental data. Unlike the band gap reduction of 51 meV and enhancement of spin-orbit splitting energy by similar to 27 meV in bulk GaSb0.987Bi0.013, 7.3% compressive strain in GaSbBi/GaAs quantum wells (QWs) amends the scenario completely by increasing the band gap to 1.12 eV and the spin-orbit splitting energy to 1.217 eV. The dispersion relations and effective masses of the carriers in the crystal directions, Delta, Lambda and Sigma are calculated near the Gamma point using this Hamiltonian yield some interesting results. The variation of the optical gain with the density of injected carriers and dimension of the QW is calculated and the peak of the gain curve exhibits a shift towards lower wavelengths with the decrease in the width of the QWs. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:442 / 453
页数:12
相关论文
共 50 条
  • [1] Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the k • p Model
    Wang, Chang
    Pan, Wenwu
    Kolokolov, Konstantin
    Wang, Shumin
    CHINESE PHYSICS LETTERS, 2018, 35 (05)
  • [2] Band Structure, Optical Transition, and Optical Gain of Type-II InAs(N)/GaSb Quantum Wells Laser Diodes Modeled Within 16-Band and 14-Band kp Model
    Ben Ahmed, Amira
    Saidi, Hosni
    Ridene, Said
    Bouchriha, Habib
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2015, 51 (05)
  • [3] 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In) AsBi quantum wells grown on GaAs and InP substrates
    Gladysiewicz, M.
    Kudrawiec, R.
    Wartak, M. S.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (05)
  • [4] BAND STRUCTURE CALCULATION FOR QUANTUM DOT SOLAR CELLS USING K.P METHOD
    Dahal, Som N.
    Bremner, Stephen P.
    Honsberg, Christiana B.
    PVSC: 2008 33RD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-4, 2008, : 1025 - +
  • [5] Electronic band structure and optical properties of GaAsSb/GaAs for optoelectronic device applications: A 14 band k.p study
    Sharma, Arvind
    Das, T. D.
    OPTICAL MATERIALS, 2021, 112
  • [6] Reanalysis of energy band structure in the type-II quantum wells
    Li, Xinxin
    Deng, Zhen
    Jiang, Yang
    Du, Chunhua
    Jia, Haiqiang
    Wang, Wenxin
    Chen, Hong
    CHINESE PHYSICS B, 2024, 33 (06)
  • [7] Band Structure and Optical Gain of InGaAs/GaAsBi Type-Ⅱ Quantum Wells Modeled by the k·p Model
    王畅
    潘文武
    Konstantin Kolokolov
    王庶民
    Chinese Physics Letters, 2018, 35 (05) : 154 - 157
  • [8] Band structure and optical gain of InGaAsN/GaAsP/GaAs strained quantum wells
    Carrère, H
    Marie, X
    Barrau, J
    Amand, T
    Physica Status Solidi C - Conferences and Critical Reviews, Vol 2, No 8, 2005, 2 (08): : 3023 - 3026
  • [9] Band structure and optical gain in InGaAsN/GaAs and InGaAsN/GaAsN quantum wells
    Marie, X
    Barrau, J
    Amand, T
    Carrère, H
    Arnoult, A
    Fontaine, C
    Bedel-Pereira, E
    IEE PROCEEDINGS-OPTOELECTRONICS, 2003, 150 (01): : 25 - 27
  • [10] Reliable k.p band structure calculation for nanostructures using finite elements
    Veprek, Ratko G.
    Steiger, Sebastian
    Witzigmann, Bernd
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2008, 7 (04) : 521 - 529