Digital Twin Modeling of a Solar Car Based on the Hybrid Model Method with Data-Driven and Mechanistic

被引:10
|
作者
Bai, Luchang [1 ]
Zhang, Youtong [1 ]
Wei, Hongqian [1 ]
Dong, Junbo [1 ]
Tian, Wei [1 ]
机构
[1] Beijing Inst Technol, Lab Low Emiss Vehicle, Beijing 100081, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 14期
关键词
solar car; digital twin; hybrid modeling; energy consumption test; DESIGN;
D O I
10.3390/app11146399
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application This technology is expected to be used in energy management of new energy vehicles. Solar cars are energy-sensitive and affected by many factors. In order to achieve optimal energy management of solar cars, it is necessary to comprehensively characterize the energy flow of vehicular components. To model these components which are hard to formulate, this study stimulates a solar car with the digital twin (DT) technology to accurately characterize energy. Based on the hybrid modeling approach combining mechanistic and data-driven technologies, the DT model of a solar car is established with a designed cloud platform server based on Transmission Control Protocol (TCP) to realize data interaction between physical and virtual entities. The DT model is further modified by the offline optimization data of drive motors, and the energy consumption is evaluated with the DT system in the real-world experiment. Specifically, the energy consumption error between the experiment and simulation is less than 5.17%, which suggests that the established DT model can accurately stimulate energy consumption. Generally, this study lays the foundation for subsequent performance optimization research.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [1] Hybrid Analytical and Data-Driven Modeling Techniques for Digital Twin Applications
    Wunderlich, Andrew
    Booth, Kristen
    Santi, Enrico
    2021 IEEE ELECTRIC SHIP TECHNOLOGIES SYMPOSIUM (ESTS), 2021,
  • [2] Towards a digital twin: a hybrid data-driven and mechanistic digital shadow to forecast the evolution of lignocellulosic fermentation
    Lopez, Pau Cabaneros
    Udugama, Isuru A.
    Thomsen, Sune T.
    Roslander, Christian
    Junicke, Helena
    Mauricio-Iglesias, Miguel
    Gernaey, Krist, V
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2020, 14 (05): : 1046 - 1060
  • [3] A Big Data-driven Digital Twin Model Method for Building a Shop Floor
    Yan, Jihong
    Ji, Siyang
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 63 - 77
  • [4] Hybrid modeling based on mechanistic and data-driven approaches for cane sugar crystallization
    Meng, Yanmei
    Yu, Shuangshuang
    Zhang, Jinlai
    Qin, Johnny
    Dong, Zhen
    Lu, Guancheng
    Pang, Haifeng
    JOURNAL OF FOOD ENGINEERING, 2019, 257 : 44 - 55
  • [5] Digital Twin for Networking: A Data-Driven Performance Modeling Perspective
    Hui, Linbo
    Wang, Mowei
    Zhang, Liang
    Lu, Lu
    Cui, Yong
    IEEE NETWORK, 2023, 37 (03): : 202 - 209
  • [6] Data-driven digital twin model for predicting grinding force
    Qi, B.
    Park, H-S
    MODTECH INTERNATIONAL CONFERENCE - MODERN TECHNOLOGIES IN INDUSTRIAL ENGINEERING VIII, 2020, 916
  • [7] Hybrid Mechanistic and Data-driven Modeling Method of Compliant Assembly Variation Prediction for Train Body
    Wang J.
    Liu J.
    Hou X.
    Qi Z.
    Li Z.
    Liu T.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2024, 60 (06): : 177 - 186
  • [8] A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach
    Mykoniatis, Konstantinos
    Harris, Gregory A.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2021, 32 (07) : 1899 - 1911
  • [9] A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach
    Konstantinos Mykoniatis
    Gregory A. Harris
    Journal of Intelligent Manufacturing, 2021, 32 : 1899 - 1911
  • [10] Construction of digital twin model of engine in-cylinder combustion based on data-driven
    Hu, Deng
    Wang, Hechun
    Yang, Chuanlei
    Wang, Binbin
    Duan, Baoyin
    Wang, Yinyan
    Li, Hucai
    ENERGY, 2024, 293