Performance and durability of carbon black-supported Pd catalyst covered with silica layers in membrane-electrode assemblies of proton exchange membrane fuel cells

被引:8
|
作者
Fujii, Keitaro [1 ]
Ito, Mizuki [1 ]
Sato, Yasushi [1 ]
Takenaka, Sakae [2 ]
Kishida, Masahiro [2 ]
机构
[1] JX Nippon Oil & Energy Co, Cent Tech Res Lab, Naka Ku, Yokohama, Kanagawa 2310815, Japan
[2] Kyushu Univ, Grad Sch Engn, Dept Chem Engn, Nishi Ku, Fukuoka 8190395, Japan
关键词
Proton exchange membrane fuel cells; Non-Pt electrocatalyst; Durability; Silica-coating; Oxygen reduction reaction; Palladium; OXYGEN REDUCTION REACTION; POROUS SILICA; ENERGY-CONVERSION; PORE STRUCTURE; CONDUCTION; DIFFUSION; ELECTROCATALYSTS; GLASS; SIO2;
D O I
10.1016/j.jpowsour.2014.12.144
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pd metal particles supported on a high surface area carbon black (Pd/CB) were covered with silica layers to improve the durability under severe cathode condition of proton exchange membrane fuel cells (PEMFCs). The performance and the durability of the silica-coated Pd/CB (SiO2/Pd/CB) were investigated by rotating disk electrode (RDE) in aqueous HClO4 and single cell test of the membrane-electrode assemblies (MEAs). SiO2/Pd/CB showed excellent durability exceeding Pt/CB during potential cycle in single cell test as well as in RDE measurement while Pd/CB significantly degraded. Furthermore, the MEA using SiO2/Pd/CB as the cathode catalyst showed higher performance than that using Pd/CB even in the initial state. The catalytic activity of SiO2/Pd/CB was higher than that of Pd/CB, and the drop of the cell performances due to the inhibition of electron conduction, proton conduction, and oxygen diffusion by the silica layer was not significant. It has been shown that the silica-coating is a very practical technique that can stabilize metal species originally unstable in the cathode condition of PEMFCs without a decrease in the cell performance. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:100 / 106
页数:7
相关论文
共 50 条
  • [1] Membrane-Electrode Assemblies with Patterned Electrodes for Proton-exchange Membrane Fuel Cells
    Song, Chan-Ho
    Park, Jin-Soo
    CHEMISTRY LETTERS, 2018, 47 (02) : 196 - 199
  • [2] Durability of carbon-silica supported catalysts for proton exchange membrane fuel cells
    Dundar, F.
    Uzunoglu, A.
    Ata, A.
    Wynne, K. J.
    JOURNAL OF POWER SOURCES, 2012, 202 : 184 - 189
  • [3] High performance membrane-electrode assemblies with ultra-low Pt loading for proton exchange membrane fuel cells
    Xiong, L
    Manthiram, A
    ELECTROCHIMICA ACTA, 2005, 50 (16-17) : 3200 - 3204
  • [4] Structures of membrane electrode assembly catalyst layers for proton exchange membrane fuel cells
    Yu, Tzyy-Lung Leon
    Lin, Hsiu-Li
    Su, Po-Hao
    Wang, Guan-Wen
    Open Fuels and Energy Science Journal, 2012, 5 (01): : 28 - 38
  • [5] Preparation of membrane electrode assemblies for proton exchange membrane fuel cells
    Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China
    不详
    不详
    Jixie Gongcheng Xuebao, 2009, 2 (75-80): : 75 - 80
  • [6] Improved membrane and electrode assemblies for proton exchange membrane fuel cells
    Iyuke, SE
    Mohamad, AB
    Kadhum, AAH
    Daud, WRW
    Rachid, C
    JOURNAL OF POWER SOURCES, 2003, 114 (02) : 195 - 202
  • [7] Effect of Dispersion Solvents in Catalyst Inks on the Performance and Durability of Catalyst Layers in Proton Exchange Membrane Fuel Cells
    Song, Chan-Ho
    Park, Jin-Soo
    ENERGIES, 2019, 12 (03)
  • [8] Effects of gradient structures of cathode catalyst layers on performance and durability of proton exchange membrane fuel cells
    Dong, Enci
    Zhao, Hancheng
    Zhang, Ruiyuan
    Chen, Li
    Tao, Wen-Quan
    ELECTROCHIMICA ACTA, 2024, 477
  • [9] Effect of dispersing solvents for ionomers on the performance and durability of catalyst layers in proton exchange membrane fuel cells
    Park, Jong-Hyeok
    Shin, Mun-Sik
    Park, Jin-Soo
    ELECTROCHIMICA ACTA, 2021, 391
  • [10] Understanding of hydrocarbon ionomers in catalyst layers for enhancing the performance and durability of proton exchange membrane fuel cells
    Pu, Xingtong
    Duan, Yuting
    Li, Jialin
    Ru, Chunyu
    Zhao, Chengji
    JOURNAL OF POWER SOURCES, 2021, 493