Minimal bundles and fine moduli spaces

被引:1
|
作者
Hein, Georg [1 ]
机构
[1] Univ Duisburg Essen, Fak Math, D-45117 Essen, Germany
关键词
Fourier-Mukai transform; stable vector bundle; Raynaud bundle;
D O I
10.1002/mana.200910081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study coherent sheaves E on a smooth projective curve X which are minimal with respect to the property that h(0)(E circle times L) > 0 for all line bundles L of degree zero on X. We show that these sheaves define ample divisors D(E) on the Picard torus Pic(0)(X) (see Theorem 3.3). Next we classify all minimal sheaves of rank one (see Theorem 4.3) and two (see Theorem 4.4). As an application we show (see Proposition 5.5) that the moduli space parameterizing rank two bundles of odd degree can be obtained as a Quot scheme. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1880 / 1888
页数:9
相关论文
共 50 条