The log-generalized modified Weibull regression model

被引:11
|
作者
Ortega, Edwin M. M. [1 ]
Cordeiro, Gauss M. [2 ]
Carrasco, Jalmar M. F. [3 ]
机构
[1] USP ESALQ, Dept Ciencias Exatas, Sao Paulo, Brazil
[2] Univ Fed Rural Pernambuco UFRPE, DEINFO, Dept Estat & Informat, Recife, PE, Brazil
[3] USP IME, Dept Estat, Sao Paulo, Brazil
关键词
Censored data; generalized modified Weibull distribution; log-Weibull regression; residual analysis; sensitivity analysis; survival function; LOCAL INFLUENCE; CENSORED-DATA; INFLUENCE DIAGNOSTICS; DISTRIBUTIONS; RESIDUALS;
D O I
10.1214/09-BJPS110
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the first time, we introduce the log-generalized modified Weibull regression model based on the modified Weibull distribution [Carrasco, Ortega and Cordeiro Comput. Statist. Data Anal. 53 (2008) 450-462]. This distribution can accommodate increasing, decreasing, bathtub and unimodal shaped hazard functions. A second advantage is that it includes classical distributions reported in lifetime literature as special cases. We also show that the new regression model can be applied to censored data since it represents a parametric family of models that includes as submodels several widely known regression models and therefore can be used more effectively in the analysis of survival data. We obtain maximum likelihood estimates for the model parameters by considering censored data and evaluate local influence on the estimates of the parameters by taking different perturbation schemes. Some global-influence measurements are also investigated. In addition, we define martingale and deviance residuals to detect outliers and evaluate the model assumptions. We demonstrate that our extended regression model is very useful to the analysis of real data and may give more realistic fits than other special regression models.
引用
收藏
页码:64 / 89
页数:26
相关论文
共 50 条
  • [1] An extreme quantile estimator for the log-generalized Weibull-tail model
    Albert, Clement
    Dutfoy, Anne
    Gardes, Laurent
    Girard, Stephane
    [J]. ECONOMETRICS AND STATISTICS, 2020, 13 : 137 - 174
  • [2] A high quantile estimator based on the log-generalized Weibull tail limit
    de Valk, Cees
    Cai, Juan-Juan
    [J]. ECONOMETRICS AND STATISTICS, 2018, 6 : 107 - 128
  • [3] The Log Beta Generalized Weibull Regression Model for Lifetime Data
    Chanasriphum, N.
    Seenoi, P.
    Srisodaphol, W.
    [J]. 2ND INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS, 2019, 1366
  • [4] On estimation and diagnostics analysis in log-generalized gamma regression model for interval-censored data
    Hashimoto, Elizabeth M.
    Ortega, Edwin M. M.
    Cancho, Vicente G.
    Cordeiro, Gauss M.
    [J]. STATISTICS, 2013, 47 (02) : 379 - 398
  • [5] A log-extended Weibull regression model
    Silva, Giovana O.
    Ortega, Edwin M. M.
    Cordeiro, Gauss M.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4482 - 4489
  • [6] Heteroscedastic log-exponentiated Weibull regression model
    Ortega, Edwin M. M.
    Lemonte, Artur J.
    Cordeiro, Gauss M.
    Cancho, Vicente G.
    Mialhe, Fabio L.
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (03) : 384 - 408
  • [7] A new generalized odd log-logistic flexible Weibull regression model with applications in repairable systems
    Prataviera, Fabio
    Ortega, Edwin M. M.
    Cordeiro, Gauss M.
    Pescim, Rodrigo R.
    Verssani, Bruna A. W.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2018, 176 : 13 - 26
  • [8] A STUDY OF A GENERALIZED MODIFIED WEIBULL MODEL: AN EXPONENTIATED WEIBULL CASE
    Wu, Han
    Rahman, Mezbahur
    Patwary, Mohammad Shaha Alam
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 49 (05) : 357 - 367
  • [9] A Log-Linear Regression Model for the Beta-Weibull Distribution
    Ortega, Edwin M. M.
    Cordeiro, Gauss M.
    Hashimoto, Elizabeth M.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2011, 40 (08) : 1206 - 1235
  • [10] Log-modified Weibull regression models with censored data: Sensitivity and residual analysis
    Carrasco, Jalmar M. R.
    Ortega, Edwin M. M.
    Paula, Gilberto A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (08) : 4021 - 4039