Pedestal evolution physics in low triangularity JET tokamak discharges with ITER-like wall

被引:16
|
作者
Bowman, C. [1 ,113 ]
Dickinson, D. [1 ]
Horvath, L. [1 ,2 ,113 ]
Lunniss, A. E. [1 ]
Wilson, H. R. [1 ,2 ,113 ]
Cziegler, I. [1 ]
Frassinetti, L. [3 ,46 ]
Gibson, K. [1 ]
Kirk, A. [2 ,11 ]
Lipschultz, B. [1 ,113 ]
Maggi, C. F. [2 ]
Roach, C. M. [2 ]
Saarelma, S. [2 ,11 ]
Snyder, P. B. [4 ]
Thornton, A. [2 ,11 ]
Wynn, A. [1 ,2 ,113 ]
Abduallev, S. [43 ]
Abhangi, M. [50 ]
Abreu, P. [57 ]
Afzal, M. [11 ]
Aggarwal, K. M. [33 ]
Ahlgren, T. [105 ]
Ahn, J. H. [12 ]
Aho-Mantila, L. [115 ]
Aiba, N. [73 ]
Airila, M. [115 ]
Albanese, R. [108 ]
Aldred, V. [11 ]
Alegre, D. [97 ]
Alessi, E. [49 ]
Aleynikov, P. [59 ]
Alfier, A. [16 ]
Alkseev, A. [76 ]
Allinson, M. [11 ]
Alper, B. [11 ]
Alves, E. [57 ]
Ambrosino, G. [108 ]
Ambrosino, R. [109 ]
Amicucci, L. [94 ]
Amosov, V. [92 ]
Sunden, E. Andersson [26 ]
Angelone, M. [94 ]
Anghel, M. [89 ]
Angioni, C. [66 ]
Appel, L. [11 ]
Appelbee, C. [11 ]
Arena, P. [34 ]
Ariola, M. [109 ]
Arnichand, H. [12 ]
Arshad, S. [45 ]
机构
[1] Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England
[2] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[3] KTH, Assoc VR, Fus Plasma Phys, SE-10044 Stockholm, Sweden
[4] Gen Atom Co, POB 85608, San Diego, CA 92186 USA
[5] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland
[6] Aix Marseille Univ, CNRS, Ctr Marseille, M2P2 UMR 7340, F-13451 Marseille, France
[7] Aix Marseille Univ, CNRS, IUSTI UMR 7343, F-13013 Marseille, France
[8] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France
[9] Arizona State Univ, Tempe, AZ USA
[10] Barcelona Supercomp Ctr, Barcelona, Spain
[11] CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[12] CEA, IRFM, F-13108 St Paul Les Durance, France
[13] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[14] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 160, BR-22290180 Rio De Janeiro, Brazil
[15] Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy
[16] Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy
[17] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[18] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[19] Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
[20] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[21] Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy
[22] Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia
[23] Warsaw Univ Technol, Dept Mat Sci, PL-01152 Warsaw, Poland
[24] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea
[25] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[26] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[27] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[28] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[29] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[30] Univ Basel, Dept Phys, Basel, Switzerland
[31] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[32] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[33] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[34] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy
[35] Univ Trento, Dipartimento Ingn Ind, Trento, Italy
[36] Dublin City Univ, Dublin, Ireland
[37] Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland
[38] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany
[39] Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England
[40] European Commiss, B-1049 Brussels, Belgium
[41] ULB, Fluid & Plasma Dynam, Campus Plaine CP 231 Blvd Triomphe, B-1050 Brussels, Belgium
[42] FOM Inst DIFFER, Eindhoven, Netherlands
[43] Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[44] Fourth State Res, 503 Lockhart Dr, Austin, TX USA
[45] Fus Energy Joint Undertaking, Josep Pl 2,Torres Diagonal Litoral B3, Barcelona 08019, Spain
[46] KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden
[47] Gen Atom, POB 85608, San Diego, CA 92186 USA
[48] HRS Fusion, W Orange, NJ USA
[49] IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy
[50] Inst Plasma Res, Gandhinagar 382428, Gujarat, India
基金
英国工程与自然科学研究理事会;
关键词
pedestal; ELMs; JET; stability; STABILITY; MODES; INSTABILITIES;
D O I
10.1088/1741-4326/aa90bc
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The pressure gradient of the high confinement pedestal region at the edge of tokamak plasmas rapidly collapses during plasma eruptions called edge localised modes (ELMs), and then re-builds over a longer time scale before the next ELM. The physics that controls the evolution of the JET pedestal between ELMs is analysed for 1.4 MA, 1.7 T, low triangularity, delta = 0.2, discharges with the ITER-like wall, finding that the pressure gradient typically tracks the ideal magneto-hydrodynamic ballooning limit, consistent with a role for the kinetic ballooning mode. Furthermore, the pedestal width is often influenced by the region of plasma that has second stability access to the ballooning mode, which can explain its sometimes complex evolution between ELMs. A local gyrokinetic analysis of a second stable flux surface reveals stability to kinetic ballooning modes; global effects are expected to provide a destabilising mechanism and need to be retained in such second stable situations. As well as an electronscale electron temperature gradient mode, ion scale instabilities associated with this flux surface include an electro-magnetic trapped electron branch and two electrostatic branches propagating in the ion direction, one with high radial wavenumber. In these second stability situations, the ELM is triggered by a peeling-ballooning mode; otherwise the pedestal is somewhat below the peeling-ballooning mode marginal stability boundary at ELM onset. In this latter situation, there is evidence that higher frequency ELMs are paced by an oscillation in the plasma, causing a crash in the pedestal before the peeling-ballooning boundary is reached. A model is proposed in which the oscillation is associated with hot plasma filaments that are pushed out towards the plasma edge by a ballooning mode, draining their free energy into the cooler plasma there, and then relaxing back to repeat the process. The results suggest that avoiding the oscillation and maximising the region of plasma that has second stability access will lead to the highest pedestal heights and, therefore, best confinement-a key result for optimising the fusion performance of JET and future tokamaks, such as ITER.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Studies of the pedestal structure and inter-ELM pedestal evolution in JET with the ITER-like wall
    Maggi, C. F.
    Frassinetti, L.
    Horvath, L.
    Lunniss, A.
    Saarelma, S.
    Wilson, H.
    Flanagan, J.
    Leyland, M.
    Lupelli, I.
    Pamela, S.
    Urano, H.
    Garzotti, L.
    Lerche, E.
    Nunes, I.
    Rimini, F.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    NUCLEAR FUSION, 2017, 57 (11)
  • [2] Be ITER-like wall at the JET tokamak under plasma
    Tsavalas, P.
    Lagoyannis, A.
    Mergia, K.
    Rubel, M.
    Triantou, K.
    Harissopulos, S.
    Kokkoris, M.
    Petersson, P.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    PHYSICA SCRIPTA, 2017, T170
  • [3] Simulation with the COREDIV code of JET discharges with the ITER-like wall
    Telesca, G.
    Zagorski, R.
    Brezinsek, S.
    Brix, M.
    Flanagan, J.
    Ivanova-Stanik, I.
    Lehnen, M.
    Stamp, M.
    Van Oost, G.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S567 - S571
  • [4] An ITER-like wall for JET
    Pamela, J.
    Matthews, G. F.
    Philipps, V.
    Kamendje, R.
    JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (1-3) : 1 - 11
  • [5] Numerical Scaling with the COREDIV Code of JET Discharges with the ITER-Like Wall
    Telesca, G.
    Ivanova-Stanik, I.
    Zagorski, R.
    Brezinsek, S.
    Giroud, C.
    Van Ooost, G.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2014, 54 (4-6) : 347 - 352
  • [6] Wall conditioning of JET with the ITER-Like Wall
    Douai, D.
    Brezinsek, S.
    Esser, H. G.
    Joffrin, E.
    Keenan, T.
    Knipe, S.
    Kogut, D.
    Lomas, P. J.
    Marsen, S.
    Nunes, I.
    Philipps, V.
    Pitts, R. A.
    Shimada, M.
    de Vries, P.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S1172 - S1176
  • [7] Operation of JET with an ITER-like Wall
    Horton, Lorne
    FUSION ENGINEERING AND DESIGN, 2015, 96-97 : 28 - 33
  • [8] Impact of the ITER-like wall on divertor detachment and on the density limit in the JET tokamak
    Huber, A.
    Brezinsek, S.
    Groth, M.
    de Vries, P. C.
    Riccardo, V.
    van Rooij, G.
    Sergienko, G.
    Arnoux, G.
    Boboc, A.
    Bilkova, P.
    Calabro, G.
    Clever, M.
    Coenen, J. W.
    Beurskens, M. N. A.
    Eich, T.
    Jachmich, S.
    Lehnen, M.
    Lerche, E.
    Marsen, S.
    Matthews, G. F.
    McCormick, K.
    Meigs, A. G.
    Mertens, Ph.
    Philipps, V.
    Rapp, J.
    Samm, U.
    Stamp, M.
    Wischmeier, M.
    Wiesen, S.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S139 - S147
  • [9] Power handling of the JET ITER-like wall
    Arnoux, G.
    Balboa, I.
    Clever, M.
    Devaux, S.
    De Vries, P.
    Eich, T.
    Firdaouss, M.
    Jachmich, S.
    Lehnen, M.
    Lomas, P. J.
    Matthews, G. F.
    Mertens, Ph
    Nunes, I.
    Riccardo, V.
    Ruset, C.
    Sieglin, B.
    Valcarcel, D. F.
    Wilson, J.
    Zastrow, K-D
    PHYSICA SCRIPTA, 2014, T159
  • [10] Overview of the JET ITER-like Wall Project
    Philipps, V.
    Mertens, Ph.
    Matthews, G. F.
    Maier, H.
    FUSION ENGINEERING AND DESIGN, 2010, 85 (7-9) : 1581 - 1586