Gravitational wave background from a cosmological population of core-collapse supernovae

被引:82
|
作者
Ferrari, V
Matarrese, S
Schneider, R
机构
[1] Univ Roma La Sapienza, Dipartimento Fis G Marconi, I-00185 Rome, Italy
[2] Sezione INFN Roma 1, I-00185 Rome, Italy
[3] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy
[4] Sexione INFN Padova, I-35131 Padua, Italy
关键词
black hole physics; gravitation; stars : formation;
D O I
10.1046/j.1365-8711.1999.02194.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyse the stochastic background of gravitational radiation emitted by a cosmological population of core-collapse supernovae. The supernova rate as a function of redshift is deduced from an observation-based determination of the star formation rate density evolution. We then restrict our analysis to the range of progenitor masses leading to black hole collapse. In this case, the main features of the gravitational wave emission spectra have been shown to be, to some extent, independent of the initial conditions and of the equation of state of the collapsing star, and to depend only on the black hole mass and angular momentum. We calculate the overall signal produced by the ensemble of black hole collapses throughout the Universe, assuming a flat cosmology with a vanishing cosmological constant. Within a wide range of parameter values, we find that the spectral strain amplitude has a maximum at a few hundred Hz with an amplitude between 10(-28) and 10(-27) Hz(-1/2); the corresponding closure density, Omega(GW), has a maximum amplitude ranging between 10(-11) and 10(-10) in the frequency interval similar to 1.5 - 2.5 kHz. Contrary to previous claims, our observation-based determination leads to a duty cycle of order 0.01, making our stochastic background a non-continuous one. Although the amplitude of our background is comparable to the sensitivity that can be reached by a pair of advanced LIGO detectors, the characteristic shot-noise structure of the predicted signal might, in principle, be exploited to design specific detection strategies.
引用
收藏
页码:247 / 257
页数:11
相关论文
共 50 条
  • [1] The Gravitational Wave Signal from Core-collapse Supernovae
    Morozova, Viktoriya
    Radice, David
    Burrows, Adam
    Vartanyan, David
    [J]. ASTROPHYSICAL JOURNAL, 2018, 861 (01):
  • [2] Characterizing the Gravitational Wave Signal from Core-collapse Supernovae
    Radice, David
    Morozova, Viktoriya
    Burrows, Adam
    Vartanyan, David
    Nagakura, Hiroki
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2019, 876 (01)
  • [3] The gravitational-wave signature of core-collapse supernovae
    Ott, Christian D.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (06)
  • [4] Gravitational-wave signature of core-collapse supernovae
    Vartanyan, David
    Burrows, Adam
    Wang, Tianshu
    Coleman, Matthew S. B.
    White, Christopher J.
    [J]. PHYSICAL REVIEW D, 2023, 107 (10)
  • [5] Gravitational radiation from core-collapse supernovae
    Muller, E
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (06) : 1455 - 1460
  • [6] Core-collapse supernovae and gravitational waves
    Cardall, CY
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 138 : 436 - 438
  • [7] Gravitational waves and core-collapse supernovae
    Bisnovatyi-Kogan, G. S.
    Moiseenko, S. G.
    [J]. PHYSICS-USPEKHI, 2017, 60 (08) : 843 - 850
  • [8] Gravitational Wave Eigenfrequencies from Neutrino-driven Core-collapse Supernovae
    Wolfe, Noah E.
    Frohlich, Carla
    Miller, Jonah M.
    Torres-Forne, Alejandro
    Cerda-Duran, Pablo
    [J]. ASTROPHYSICAL JOURNAL, 2023, 954 (02):
  • [9] Constraining the Time of Gravitational-wave Emission from Core-collapse Supernovae
    Gill, K.
    Hosseinzadeh, G.
    Berger, E.
    Zanolin, M.
    Szczepanczyk, M.
    [J]. ASTROPHYSICAL JOURNAL, 2022, 931 (02):
  • [10] Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae
    Kotake, Kei
    Sato, Katsuhiko
    Takahashi, Keitaro
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2006, 69 (04) : 971 - 1143