The application of Kalman filter technique in testing of Fiber Optic Gyroscope drift

被引:0
|
作者
Wu, ZH [1 ]
Shen, GX [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Astronaut Sch, Beijing 100083, Peoples R China
关键词
Fiber Optic Gyroscope; Kalman filter technique; testing;
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
At present the Fiber Optic Gyroscope (FOG) is usually used in INS (Inertial Navigation System) as an inertial component, its error is the important factor that effect navigation precision of system, however, the precision of FOG is lower that it is necessary to analyze the performance and give the error parameters to raise the precision. In this paper, the test data of FOG are analyzed, and using the AR (2) model to estimate the parameter of state equation, and receive the statistic characteristic of noise from observation information. And then, we use Kalman filter technique to wipe off the noise from the gathered data. At last, the simulation result of the fiber optic gyroscope testing data is given. And Matlab is used in programming the simulation program, and the testing curve is given.
引用
收藏
页码:3100 / 3102
页数:3
相关论文
共 50 条
  • [1] Adaptive Kalman filter method with colored noise for fiber optic gyroscope random drift
    Jin, Kaidi
    Chai, Hongzhou
    Su, Chuhan
    Xiang, Minzhi
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (01): : 80 - 86
  • [2] A MODIFIED ADAPTIVE KALMAN FILTER FOR FIBER OPTIC GYROSCOPE
    Senyurek, Volkan Y.
    Baspinar, Ulvi
    Varol, Huseyin S.
    [J]. REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2014, 59 (02): : 153 - 162
  • [3] Application of the Scaled Unscented Kalman Filter with Augmented State in the Fiber Optic Gyroscope
    Ji, Zhongxiao
    Ma, Caiwen
    [J]. 2012 INTERNATIONAL CONFERENCE ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING (ICMPBE2012), 2012, 33 : 1817 - 1824
  • [4] ARMA model based adaptive unscented fading Kalman filter for reducing drift of fiber optic gyroscope
    Narasimhappa, Mundla
    Nayak, J.
    Terra, Marco Henrique
    Sabat, Samrat L.
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2016, 251 : 42 - 51
  • [5] AMA- and RWE-Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal
    Yang, Gongliu
    Liu, Yuanyuan
    Li, Ming
    Song, Shunguang
    [J]. SENSORS, 2015, 15 (10) : 26940 - 26960
  • [6] Efficient hybrid Kalman filter for denoising fiber optic gyroscope signal
    Peesapati, Rangababu
    Sabat, Samrat L.
    Karthik, K. P.
    Nayak, J.
    Giribabu, N.
    [J]. OPTIK, 2013, 124 (20): : 4549 - 4556
  • [7] Adaptive Kalman filter based on random-weighting estimation for denoising the fiber-optic gyroscope drift signal
    Song, Ningfang
    Yuan, Zhengguo
    Pan, Xiong
    [J]. APPLIED OPTICS, 2019, 58 (35) : 9505 - 9513
  • [8] Fiber-Optic Gyroscope Signal Denoising Using an Adaptive Robust Kalman Filter
    Narasimhappa, Mundla
    Sabat, Samrat L.
    Nayak, Jagannath
    [J]. IEEE SENSORS JOURNAL, 2016, 16 (10) : 3711 - 3718
  • [9] An improved adaptive Kalman filter for denoising fiber optic gyro drift signal
    Narasimhappa, Mundla
    Sabat, Samrat L.
    Rangababu, P.
    Nayak, J.
    [J]. 2013 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2013,
  • [10] A Kalman Filter Approach based on Random Drift Data of Fiber Optic Gyro
    Wu, Xingming
    Duan, Li
    Chen, Weihai
    [J]. 2011 6TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2011, : 1933 - 1937