Multi-site Normative Modeling of Diffusion Tensor Imaging Metrics Using Hierarchical Bayesian Regression

被引:3
|
作者
Villalon-Reina, Julio E. [1 ]
Moreau, Clara A. [2 ]
Nir, Talia M. [1 ]
Jahanshad, Neda [1 ]
Maillard, Anne [3 ]
Romascano, David [3 ]
Draganski, Bogdan [4 ,5 ,6 ]
Lippe, Sarah [7 ]
Bearden, Carrie E. [8 ,9 ]
Kia, Seyed Mostafa [10 ,11 ]
Marquand, Andre F. [11 ]
Jacquemont, Sebastien [12 ]
Thompson, Paul M. [1 ]
机构
[1] Univ Southern Calif, Mark & Mary Stevens Neuroimaging & Informat Inst, Keck Sch Med, Imaging Genet Ctr, Marina Del Rey, CA USA
[2] Univ Paris, Inst Pasteur, Paris, France
[3] Lausanne Univ Hosp CHUV, Dept Psychiatrie, Serv Troubles Spectre Autisme & Apparentes, Lausanne, Switzerland
[4] Univ Lausanne Hosp, Dept Clin Neurosci, Ctr Res Neurosci, Lab Res Neuroimaging LREN, Lausanne, Switzerland
[5] Univ Lausanne, Lausanne, Switzerland
[6] Max Planck Inst Human Cognit & Brain Sci, Neurol Dept, Leipzig, Germany
[7] Univ Montreal, Sainte Justine Ctr Rech, Montreal, PQ, Canada
[8] Univ Calif Los Angeles, Dept Psychiatry & Biobehavioral Sci, Los Angeles, CA USA
[9] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA USA
[10] Univ Med Ctr Utrecht, Dept Psychiat, NL-3584 CX Utrecht, Netherlands
[11] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behaviour, Med Ctr, Nijmegen, Netherlands
[12] Univ Montreal, Dept Pediat, Montreal, PQ, Canada
基金
瑞士国家科学基金会;
关键词
BRAIN; PROJECT; IMAGES;
D O I
10.1007/978-3-031-16431-6_20
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Multi-site imaging studies can increase statistical power and improve the reproducibility and generalizability of findings, yet data often need to be harmonized. One alternative to data harmonization in the normative modeling setting is Hierarchical Bayesian Regression (HBR), which overcomes some of the weaknesses of data harmonization. Here, we test the utility of three model types, i.e., linear, polynomial and b-spline - within the normative modeling HBR framework - for multi-site normative modeling of diffusion tensor imaging (DTI) metrics of the brain's white matter microstructure, across the lifespan. These models of age dependencies were fitted to cross-sectional data from over 1,300 healthy subjects (age range: 2-80 years), scanned at eight sites in diverse geographic locations. We found that the polynomial and b-spline fits were better suited for modeling relationships of DTI metrics to age, compared to the linear fit. To illustrate the method, we also apply it to detect microstructural brain differences in carriers of rare genetic copy number variants, noting how model complexity can impact findings.
引用
收藏
页码:207 / 217
页数:11
相关论文
共 50 条
  • [1] Harmonization of multi-site diffusion tensor imaging data
    Fortin, Jean-Philippe
    Parker, Drew
    Tunc, Birkan
    Watanabe, Takanori
    Elliott, Mark A.
    Ruparel, Kosha
    Roalf, David R.
    Satterthwaite, Theodore D.
    Gur, Ruben C.
    Gur, Raquel E.
    Schultz, Robert T.
    Verma, Ragini
    Shinohara, Russell T.
    [J]. NEUROIMAGE, 2017, 161 : 149 - 170
  • [2] PROGRESSIVE WHITE MATTER ABNORMALITIES IN SCHIZOPHRENIA: A MULTI-SITE DIFFUSION TENSOR IMAGING STUDY
    White, Tonya
    Magnotta, V. A.
    Bockholt, H. J.
    Williams, S.
    Gollub, R. L.
    Mueller, B. A.
    Ho, B. C.
    Jung, R.
    Clark, V. P.
    Lauriello, J.
    Bustillo, J. R.
    Schulz, S. C.
    Andreasen, N. C.
    Calhoun, V. D.
    Lim, K. O.
    [J]. SCHIZOPHRENIA BULLETIN, 2009, 35 : 204 - 205
  • [3] Closing the life-cycle of normative modeling using federated hierarchical Bayesian regression
    Kia, Seyed Mostafa
    Huijsdens, Hester
    Rutherford, Saige
    de Boer, Augustijn
    Dinga, Richard
    Wolfers, Thomas
    Berthet, Pierre
    Mennes, Maarten
    Andreassen, Ole A.
    Westlye, Lars T.
    Beckmann, Christian F.
    Marquand, Andre F.
    [J]. PLOS ONE, 2022, 17 (12):
  • [4] Normative Modeling of Diffusion Tensor Imaging Metrics of White Matter Microstructure in 52,719 Subjects
    Villalon-Reina, Julio
    Zhu, Alyssa
    Thomopoulos, Sophia
    Kushan, Leila
    Laltoo, Emily
    Feng, Yixue
    Chattopadhyay, Tamoghna
    Nourollahimoghadam, Elnaz
    Benavidez, Sebastian M.
    Nabulsi, Leila
    Moreau, Clara
    Lawrence, Katherine
    Nir, Talia
    Jahanshad, Neda
    Bearden, Carrie
    Thompson, Paul M.
    [J]. BIOLOGICAL PSYCHIATRY, 2024, 95 (10) : S77 - S78
  • [5] A Hierarchical Bayesian Model for Multi-Site Diffeomorphic Image Atlases
    Hromatka, Michelle
    Zhang, Miaomiao
    Fleishman, Greg M.
    Gutman, Boris
    Jahanshad, Neda
    Thompson, Paul
    Fletcher, P. Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT II, 2015, 9350 : 372 - 379
  • [6] Hierarchical Bayesian Approach to a Multi-Site Hidden Markov Model
    Kim, Dal Ho
    Goh, Gyuhyeong
    Kim, Yongku
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (06) : 1241 - 1252
  • [7] Predicting Survival in Glioblastomas Using Diffusion Tensor Imaging Metrics
    Saksena, Sona
    Jain, Rajan
    Narang, Jayant
    Scarpace, Lisa
    Schultz, Lonni R.
    Lehman, Norman L.
    Hearshen, David
    Patel, Suresh C.
    Mikkelsen, Tom
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 32 (04) : 788 - 795
  • [8] A hierarchical Bayesian approach for multi-site optimization of a satellite-based evapotranspiration model
    Su, Yonghong
    Feng, Qi
    Zhu, Gaofeng
    Gu, Chunjie
    Wang, Yunquan
    Shang, Shasha
    Zhang, Kun
    Han, Tuo
    Chen, Huiling
    Ma, Jinzhu
    [J]. HYDROLOGICAL PROCESSES, 2018, 32 (26) : 3907 - 3923
  • [9] Harmonization of multi-site diffusion tensor imaging data for cervical and thoracic spinal cord at 1.5 T and 3 T using longitudinal ComBat
    Middleton, Devon M.
    Li, Yutong
    Chen, Andrew
    Shinohara, Russell
    Fisher, Joshua
    Krisa, Laura
    Elliot, Mark
    Faro, Scott H.
    Woo, John H.
    Flanders, Adam E.
    Mohamed, Feroze B.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] Harmonization of multi-site diffusion tensor imaging data for cervical and thoracic spinal cord at 1.5 T and 3 T using longitudinal ComBat
    Devon M. Middleton
    Yutong Li
    Andrew Chen
    Russell Shinohara
    Joshua Fisher
    Laura Krisa
    Mark Elliot
    Scott H. Faro
    John H. Woo
    Adam E. Flanders
    Feroze B. Mohamed
    [J]. Scientific Reports, 13