Latent Affective Mapping: A Novel Framework for the Data-Driven Analysis of Emotion in Text

被引:0
|
作者
Bellegarda, Jerome R. [1 ]
机构
[1] Apple Comp Inc, Speech & Language Technol, Cupertino, CA 95014 USA
关键词
expressive speech synthesis; emotion congruence; emotion detection/classification; latent semantic mapping;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A necessary step in the generation of expressive speech synthesis is the automatic detection and classification of emotions most likely to be present in textual input. We have recently advocated [1] a new emotion analysis strategy leveraging two separate semantic levels: one that encapsulates the foundations of the domain considered, and one that specifically accounts for the overall affective fabric of the language. This paper expands this premise into a more general framework, dubbed latent affective mapping, to expose the emergent relationship between these two levels. Such connection in turn advantageously informs the emotion classification process. The benefits gained though a richer description of the underlying affective space are illustrated via an empirical comparison of two different mapping instantiations (latent affective folding and latent affective embedding) with more conventional techniques based on expert knowledge of emotional keywords and keysets.
引用
收藏
页码:1117 / 1120
页数:4
相关论文
共 50 条
  • [1] DATA-DRIVEN ANALYSIS OF EMOTION IN TEXT USING LATENT AFFECTIVE FOLDING AND EMBEDDING
    Bellegarda, Jerome R.
    [J]. COMPUTATIONAL INTELLIGENCE, 2013, 29 (03) : 506 - 526
  • [2] A Data-driven Affective Text Classification Analysis
    Ardakani, Saeid Pourroostaei
    Zhou, Can
    Wu, Xuting
    Ma, Yingrui
    Che, Jizhou
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 199 - 204
  • [3] Latent class analysis of psychotic-affective disorders with data-driven plasma proteomics
    Rhee, Sang Jin
    Shin, Dongyoon
    Shin, Daun
    Song, Yoojin
    Joo, Eun-Jeong
    Jung, Hee Yeon
    Roh, Sungwon
    Lee, Sang-Hyuk
    Kim, Hyeyoung
    Bang, Minji
    Lee, Kyu Young
    Kim, Se Hyun
    Kim, Minah
    Lee, Jihyeon
    Kim, Jaenyeon
    Kim, Yeongshin
    Kwon, Jun Soo
    Ha, Kyooseob
    Kim, Youngsoo
    Ahn, Yong Min
    [J]. TRANSLATIONAL PSYCHIATRY, 2023, 13 (01)
  • [4] Latent class analysis of psychotic-affective disorders with data-driven plasma proteomics
    Sang Jin Rhee
    Dongyoon Shin
    Daun Shin
    Yoojin Song
    Eun-Jeong Joo
    Hee Yeon Jung
    Sungwon Roh
    Sang-Hyuk Lee
    Hyeyoung Kim
    Minji Bang
    Kyu Young Lee
    Se Hyun Kim
    Minah Kim
    Jihyeon Lee
    Jaenyeon Kim
    Yeongshin Kim
    Jun Soo Kwon
    Kyooseob Ha
    Youngsoo Kim
    Yong Min Ahn
    [J]. Translational Psychiatry, 13
  • [5] A Novel Framework of Data-Driven Networking
    Yao, Haipeng
    Qiu, Chao
    Fang, Chao
    Chen, Xu
    Yu, F. Richard
    [J]. IEEE ACCESS, 2016, 4 : 9066 - 9072
  • [6] A Data-Driven Affective Analysis Framework Toward Naturally Expressive Speech Synthesis
    Bellegarda, Jerome R.
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2011, 19 (05): : 1113 - 1122
  • [7] A data-driven framework for mapping domains of human neurobiology
    Elizabeth Beam
    Christopher Potts
    Russell A. Poldrack
    Amit Etkin
    [J]. Nature Neuroscience, 2021, 24 : 1733 - 1744
  • [8] A data-driven framework for mapping domains of human neurobiology
    Beam, Elizabeth
    Potts, Christopher
    Poldrack, Russell A.
    Etkin, Amit
    [J]. NATURE NEUROSCIENCE, 2021, 24 (12) : 1733 - 1744
  • [9] Text data-driven new product development: a systematic mapping review
    Di Lellis, Maddalena Angela
    [J]. AKTUELLE DERMATOLOGIE, 2022, 48 (11) : 490 - 490
  • [10] A Data-Driven Framework for Visual Crowd Analysis
    Charalambous, Panayiotis
    Karamouzas, Ioannis
    Guy, Stephen J.
    Chrysanthou, Yiorgos
    [J]. COMPUTER GRAPHICS FORUM, 2014, 33 (07) : 41 - 50