Quantum Chemistry in the Age of Machine Learning

被引:275
|
作者
Dral, Pavlo O. [1 ,2 ]
机构
[1] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Fujian Prov Key Lab Theoret & Computat Chem, Dept Chem, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2020年 / 11卷 / 06期
关键词
POTENTIAL-ENERGY SURFACES; MOLECULAR-DYNAMICS SIMULATIONS; COMBINED 1ST-PRINCIPLES CALCULATION; NEURAL-NETWORK POTENTIALS; MECHANICS/MOLECULAR MECHANICS; SCHRODINGER-EQUATION; ELECTRON-DENSITY; FORCE-FIELD; BIG DATA; MODELS;
D O I
10.1021/acs.jpclett.9b03664
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the quantum chemistry (QC) community embraces machine learning (ML), the number of new methods and applications based on the combination of QC and ML is surging. In this Perspective, a view of the current state of affairs in this new and exciting research field is offered, challenges of using machine learning in quantum chemistry applications are described, and potential future developments are outlined. Specifically, examples of how machine learning is used to improve the accuracy and accelerate quantum chemical research are shown. Generalization and classification of existing techniques are provided to ease the navigation in the sea of literature and to guide researchers entering the field. The emphasis of this Perspective is on supervised machine learning.
引用
收藏
页码:2336 / 2347
页数:12
相关论文
共 50 条
  • [1] Quantum Chemistry Meets Machine Learning
    Fabrizio, Alberto
    Meyer, Benjamin
    Fabregat, Raimon
    Corminboeuf, Clemence
    CHIMIA, 2019, 73 (12) : 983 - 989
  • [2] Quantum machine learning for chemistry and physics
    Sajjan, Manas
    Li, Junxu
    Selvarajan, Raja
    Sureshbabu, Shree Hari
    Kale, Sumit Suresh
    Gupta, Rishabh
    Singh, Vinit
    Kais, Sabre
    CHEMICAL SOCIETY REVIEWS, 2022, 51 (15) : 6475 - 6573
  • [3] Quantum chemistry assisted by machine learning
    Dral, Pavlo O.
    CHEMICAL PHYSICS AND QUANTUM CHEMISTRY, 2020, 81 : 291 - 324
  • [4] In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back
    Aldossary, Abdulrahman
    Campos-Gonzalez-Angulo, Jorge Arturo
    Pablo-Garcia, Sergio
    Leong, Shi Xuan
    Rajaonson, Ella Miray
    Thiede, Luca
    Tom, Gary
    Wang, Andrew
    Avagliano, Davide
    Aspuru-Guzik, Alan
    ADVANCED MATERIALS, 2024, 36 (30)
  • [5] Machine learning the computational cost of quantum chemistry
    Heinen, Stefan
    Schwilk, Max
    von Rudorff, Guido Falk
    von Lilienfeld, O. Anatole
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (02):
  • [6] Optimized multifidelity machine learning for quantum chemistry
    Vinod, Vivin
    Kleinekathoefer, Ulrich
    Zaspel, Peter
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):
  • [7] MACHINE LEARNING, QUANTUM CHEMISTRY, AND CHEMICAL SPACE
    Ramakrishnan, Raghunathan
    von Lilienfeld, O. Anatole
    REVIEWS IN COMPUTATIONAL CHEMISTRY, VOL 30, 2017, 30 : 225 - 256
  • [8] Δ-Quantum machine-learning for medicinal chemistry
    Atz, Kenneth
    Isert, Clemens
    Boecker, Markus N. A.
    Jimenez-Luna, Jose
    Schneider, Gisbert
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (18) : 10775 - 10783
  • [9] Open source variational quantum eigensolver extension of the quantum learning machine for quantum chemistry
    Haidar, Mohammad
    Rancic, Marko J. J.
    Ayral, Thomas
    Maday, Yvon
    Piquemal, Jean-Philip
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2023, 13 (05)
  • [10] Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach
    Ramakrishnan, Raghunathan
    Dral, Pavlo O.
    Rupp, Matthias
    von Lilienfeld, O. Anatole
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (05) : 2087 - 2096