Deep and wide digging for binding motifs in ChIP-Seq data

被引:156
|
作者
Kulakovskiy, I. V. [1 ,7 ]
Boeva, V. A. [1 ,2 ,3 ,4 ,5 ]
Favorov, A. V. [1 ,6 ]
Makeev, V. J. [1 ,7 ]
机构
[1] Res Inst Genet & Select Ind Microorganisms, Moscow 117545, Russia
[2] Inst Curie, F-75248 Paris, France
[3] INSERM, U900, F-75248 Paris, France
[4] INSERM, U830, F-75248 Paris, France
[5] Mines ParisTech, F-77300 Fontainebleau, France
[6] Johns Hopkins Univ, Baltimore, MD 21205 USA
[7] Russian Acad Sci, VA Engelhardt Mol Biol Inst, Moscow 119991, Russia
关键词
IDENTIFICATION; DISCOVERY;
D O I
10.1093/bioinformatics/btq488
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
ChIP-Seq data are a new challenge for motif discovery. Such a data typically consists of thousands of DNA segments with base-specific coverage values. We present a new version of our DNA motif discovery software ChIPMunk adapted for ChIPSeqdata. ChIPMunk is an iterative algorithm that combines greedy optimization with bootstrapping and uses coverage profiles as motif positional preferences. ChIPMunk does not require truncation of long DNA segments and it is practical for processing up to tens of thousands of data sequences. Comparison with traditional (MEME) or ChIP-Seq-oriented ( HMS) motif discovery tools shows that ChIPMunk identifies the correct motifs with the same or better quality but works dramatically faster.
引用
收藏
页码:2622 / 2623
页数:2
相关论文
共 50 条
  • [1] FROM BINDING MOTIFS IN CHIP-SEQ DATA TO IMPROVED MODELS OF TRANSCRIPTION FACTOR BINDING SITES
    Kulakovskiy, Ivan
    Levitsky, Victor
    Oshchepkov, Dmitry
    Bryzgalov, Leonid
    Vorontsov, Ilya
    [J]. JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2013, 11 (01)
  • [2] A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data
    Tran, Ngoc Tam L.
    Huang, Chun-Hsi
    [J]. BIOLOGY DIRECT, 2014, 9
  • [3] A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data
    Ngoc Tam L Tran
    Chun-Hsi Huang
    [J]. Biology Direct, 9
  • [4] SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data
    Ding, Jun
    Hu, Haiyan
    Li, Xiaoman
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (05)
  • [5] Systematic discovery of cofactor motifs from ChIP-seq data by SIOMICS
    Ding, Jun
    Dhillon, Vikram
    Li, Xiaoman
    Hu, Haiyan
    [J]. METHODS, 2015, 79-80 : 47 - 51
  • [6] THE ANALYSIS OF CHIP-SEQ DATA
    Ma, Wenxiu
    Wong, Wing Hung
    [J]. METHODS IN ENZYMOLOGY, VOL 497: SYNTHETIC BIOLOGY, METHODS FOR PART/DEVICE CHARACTERIZATION AND CHASSIS ENGINEERING, PT A, 2011, 497 : 51 - 73
  • [8] Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data
    Valouev, Anton
    Johnson, David S.
    Sundquist, Andreas
    Medina, Catherine
    Anton, Elizabeth
    Batzoglou, Serafim
    Myers, Richard M.
    Sidow, Arend
    [J]. NATURE METHODS, 2008, 5 (09) : 829 - 834
  • [9] Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data
    Valouev A.
    Johnson D.S.
    Sundquist A.
    Medina C.
    Anton E.
    Batzoglou S.
    Myers R.M.
    Sidow A.
    [J]. Nature Methods, 2008, 5 (9) : 829 - 834
  • [10] Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs
    Berger, Severin
    Pachkov, Mikhail
    Arnold, Phil
    Omidi, Saeed
    Kelley, Nicholas
    Salatino, Silvia
    van Nimwegen, Erik
    [J]. GENOME RESEARCH, 2019, 29 (07) : 1164 - 1177