Convergence of Hermite interpolatory operators

被引:4
|
作者
Liu YouMing [1 ]
Zhao JunJian [1 ]
机构
[1] Beijing Univ Technol, Dept Appl Math, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Besov spaces; Hermite splines; convergence; completeness; WAVELET METHODS; DIVERGENCE-FREE;
D O I
10.1007/s11425-010-4047-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Divergence-free wavelets play important roles in both partial differential equations and fluid mechanics. Many constructions of those wavelets depend usually on Hermite splines. We study several types of convergence of the related Hermite interpolatory operators in this paper. More precisely, the uniform convergence is firstly discussed in the second part; then, the third section provides the convergence in the Donoho's sense. Based on these results, the last two parts are devoted to show the convergence in some Besov spaces, which concludes the completeness of Bittner and Urban's expansions.
引用
收藏
页码:2115 / 2126
页数:12
相关论文
共 50 条
  • [1] Convergence of Hermite interpolatory operators
    LIU YouMing & ZHAO JunJian Department of Applied Mathematics
    ScienceChina(Mathematics), 2010, 53 (08) : 2115 - 2126
  • [2] Convergence of Hermite interpolatory operators
    YouMing Liu
    JunJian Zhao
    Science China Mathematics, 2010, 53 : 2115 - 2126
  • [3] CERTAIN UNBOUNDED HERMITE-FEJER INTERPOLATORY POLYNOMIAL OPERATORS
    SAKAI, R
    ACTA MATHEMATICA HUNGARICA, 1992, 59 (1-2) : 111 - 114
  • [4] Convergence properties of certain refinable quasi-interpolatory operators
    Gori, L
    Santi, E
    APPLIED NUMERICAL MATHEMATICS, 2005, 55 (03) : 312 - 321
  • [5] On the Weighted L-1-convergence of Grunwald Interpolatory Operators
    Wang, Jian Li
    Zhou, Song Ping
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (01): : 111 - 118
  • [6] ON THE RATE OF WEIGHTED Lp CONVERGENCE BY THE GRNWALD INTERPOLATORY OPERATORS
    Yao Kui(Nanjing University
    AnalysisinTheoryandApplications, 2003, (02) : 115 - 120
  • [7] On convergence of certain Hermite-type operators
    Gupta, Vijay
    Malik, Deepak
    FILOMAT, 2024, 38 (04) : 1367 - 1374
  • [8] POINTWISE CONVERGENCE OF FRACTIONAL POWERS OF HERMITE TYPE OPERATORS
    Flores, Guillermo
    Garrigos, Gustavo
    Signes, Teresa
    Viviani, Beatriz
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 66 (01): : 187 - 205
  • [9] Refinable interpolatory and quasi-interpolatory operators
    Gori, Laura
    Pitolli, Francesca
    Santi, Efisabetta
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 75 (5-6) : 191 - 199
  • [10] OSCILLATORY INTEGRALS BY HERMITE INTERPOLATORY RULES
    ALAYLIOGLU, A
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1986, 2 (05): : 463 - 470