An implicit finite element solution of thermal flows at low Mach number

被引:11
|
作者
Liu, Weiming [1 ]
Makhviladze, Georgy [1 ]
机构
[1] Univ Cent Lancashire, Ctr Res Fire & Explos Studies, Preston PR1 2HE, Lancs, England
关键词
thermal flows; low Mach number; finite element method; implicit method; stabilised finite element method;
D O I
10.1016/j.jcp.2007.10.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Thermal flows at low Mach numbers are a basic problem in combustion, environmental pollution prediction and atmospheric physics areas. Most of the existing schemes for solving this problem treat convection explicitly, which confines time step width due to the CFL condition. In this paper, based on the pseudo residual-free bubble approach [F. Brezzi, L.P. Franca, T.J.R. Hughes, A. Russo, b = integral g, Methods Appl. Mech. Eng. 145 (1997) 329-339; T.J.R. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilised methods, Method. Appl. Mech. Eng. 127 (1995) 387-401], we introduce an implicit finite element scheme for the thermal flow problem. We firstly give a low Mach number asymptotics of compressible Navier-Stokes equations for the thermal flows and then derive the numerical scheme for them in detail. Three representative case studies are used to investigate and to test the numerical performances of the proposed scheme. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2743 / 2757
页数:15
相关论文
共 50 条
  • [1] Low-dissipation finite element strategy for low Mach number reacting flows
    Both, A.
    Lehmkuhl, O.
    Mira, D.
    Ortega, M.
    [J]. COMPUTERS & FLUIDS, 2020, 200
  • [2] A projection hybrid finite volume/element method for low-Mach number flows
    Bermudez, A.
    Ferrin, J. L.
    Saavedra, L.
    Vazquez-Cendona, M. E.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 271 : 360 - 378
  • [3] A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes
    Busto, S.
    Rio-Martin, L.
    Vazquez-Cendon, M. E.
    Dumbser, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 402
  • [4] Radiation models for thermal flows at low Mach number
    Teleaga, Ioan
    Seaid, Mohammed
    Gasser, Ingenum
    Klar, Axel
    Struckmeier, Jens
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 215 (02) : 506 - 525
  • [5] An implicit finite volume method for the solution of 3D low Mach number viscous flows using a local preconditioning technique
    Vigneron, D.
    Vaassen, J. -M.
    Essers, J. -A.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 215 (02) : 610 - 617
  • [6] The barely implicit correction algorithm for low-Mach-Number flows
    Zhang, Xiao
    Chung, Joseph D.
    Kaplan, Carolyn R.
    Oran, Elaine S.
    [J]. COMPUTERS & FLUIDS, 2018, 175 : 230 - 245
  • [7] Adaptive finite elements for stationary compressible flows at low Mach number
    Braack, M
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOLS I AND II, 2001, 140 : 169 - 178
  • [8] Finite volume methods for low Mach number flows under buoyancy
    Birken, P.
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 331 - 338
  • [9] THE LEAST-SQUARES FINITE-ELEMENT METHOD FOR LOW-MACH-NUMBER COMPRESSIBLE VISCOUS FLOWS
    YU, ST
    JIANG, BN
    LIU, NS
    WU, J
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (21) : 3591 - 3610
  • [10] A high-order accurate discontinuous Galerkin finite element method for laminar low Mach number flows
    Nigro, A.
    Renda, S.
    De Bartolo, C.
    Hartmann, R.
    Bassi, F.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 72 (01) : 43 - 68