Style-based quantum generative adversarial networks for Monte Carlo events

被引:0
|
作者
Bravo-Prieto, Carlos [1 ,2 ,3 ]
Baglio, Julien [4 ]
Ce, Marco [4 ]
Francis, Anthony [4 ,5 ]
Grabowska, Dorota M. [4 ]
Carrazza, Stefano [1 ,4 ,6 ,7 ]
机构
[1] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi, U Arab Emirates
[2] Univ Barcelona, Dept Fis Quant & Astrofis, Barcelona, Spain
[3] Univ Barcelona, Inst Ciencies Cosmos ICCUB, Barcelona, Spain
[4] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland
[5] Natl Yang Ming Chiao Tung Univ, Inst Phys, Hsinchu 30010, Taiwan
[6] Univ Milan, Dipartimento Fis, TIF Lab, Milan, Italy
[7] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy
来源
QUANTUM | 2022年 / 6卷
基金
欧洲研究理事会;
关键词
GAN;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose and assess an alternative quantum generator architecture in the context of generative adversarial learning for Monte Carlo event generation, used to simulate particle physics processes at the Large Hadron Collider (LHC). We validate this methodology by implementing the quantum network on artificial data generated from known underlying distributions. The network is then applied to Monte Carlo-generated datasets of specific LHC scattering processes. The new quantum generator architecture leads to a generalization of the state-of-the-art implementations, achieving smaller Kullback-Leibler divergences even with shallow-depth networks. Moreover, the quantum generator successfully learns the underlying distribution functions even if trained with small training sample sets; this is particularly interesting for data augmentation applications. We deploy this novel methodology on two different quantum hardware architectures, trapped-ion and superconducting technologies, to test its hardware-independent viability.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Style-Based Generator Architecture for Generative Adversarial Networks
    Karras, Tero
    Laine, Samuli
    Aila, Timo
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4217 - 4228
  • [2] A Style-Based Generator Architecture for Generative Adversarial Networks
    Karras, Tero
    Laine, Samuli
    Aila, Timo
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4396 - 4405
  • [3] Microstructure synthesis using style-based generative adversarial networks
    Fokina, Daria
    Muravleva, Ekaterina
    Ovchinnikov, George
    Oseledets, Ivan
    [J]. PHYSICAL REVIEW E, 2020, 101 (04)
  • [4] Conditional Style-Based Generative Adversarial Networks for Renewable Scenario Generation
    Yuan, Ran
    Wang, Bo
    Sun, Yeqi
    Song, Xuanning
    Watada, Junzo
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (02) : 1281 - 1296
  • [5] TLGAN: Conditional Style-Based Traffic light Generation with Generative Adversarial Networks
    Wang, Danfeng
    Ma, Xin
    [J]. 2021 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE BIG DATA AND INTELLIGENT SYSTEMS (HPBD&IS), 2021, : 192 - 195
  • [6] 3D Segmentation Guided Style-Based Generative Adversarial Networks for PET Synthesis
    Zhou, Yang
    Yang, Zhiwen
    Zhang, Hui
    Chang, Eric I-Chao
    Fan, Yubo
    Xu, Yan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (08) : 2092 - 2104
  • [7] Time-Domain Signal Synthesis with Style-Based Generative Adversarial Networks Applied to Guided Waves
    Heesch, Mateusz
    Mendrok, Krzysztof
    Dworakowski, Ziemowit
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2021), PT I, 2021, 12854 : 78 - 88
  • [8] StyleWaveGAN: Style-based synthesis of drum sounds using generative adversarial networks for higher audio quality
    Lavault, Antoine
    Roebel, Axel
    Voiry, Matthieu
    [J]. 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 234 - 238
  • [9] Folded Hamiltonian Monte Carlo for Bayesian Generative Adversarial Networks
    Pourshahrokhi, Narges
    Li, Yunpeng
    Kouchaki, Samaneh
    Barnaghi, Payam
    [J]. ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [10] Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations☆
    Athey, Susan
    Imbens, Guido W.
    Metzger, Jonas
    Munro, Evan
    [J]. JOURNAL OF ECONOMETRICS, 2024, 240 (02)