The complexity of the logistic map at the chaos threshold

被引:10
|
作者
Montangero, S
Fronzoni, L
Girgolini, P
机构
[1] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[2] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[3] Ist Biofis CNR, Area Ric Pisa, I-56010 Pisa, Italy
[4] Univ N Texas, Ctr Nonlinear Sci, Denton, TX 76203 USA
关键词
D O I
10.1016/S0375-9601(01)00332-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply a generalized version of the Kolmogorov-Sinai entropy, based on a non-extensive form, to analyzing the dynamics of the logistic map at the chaotic threshold, the paradigm of power-law sensitivity to initial conditions. We make the statistical averages on the distribution of the power indexes beta, and we show that the resulting entropy time evolution becomes a linear function of time if we assign to the non-extensive index q the value Q < 1 prescribed by the heuristic arguments of earlier work. We also show that the emerging entropy index Q is determined by the asymptotic mean value of the index beta, and that this same mean value determines the strength of the logarithmic time increase of entropy, stemming from the adoption of the ordinary Shannon form. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:81 / 87
页数:7
相关论文
共 50 条
  • [1] Computational information for the logistic map at the chaos threshold
    Bonanno, C
    Menconi, G
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2002, 2 (03): : 415 - 431
  • [2] Exact complexity of the logistic map
    Steeb, WH
    Stoop, R
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (04) : 949 - 953
  • [3] Exact complexity of the logistic map
    W. -H. Steeb
    R. Stoop
    International Journal of Theoretical Physics, 1997, 36 : 949 - 953
  • [4] Route to Chaos in Generalized Logistic Map
    Rak, R.
    Rak, E.
    ACTA PHYSICA POLONICA A, 2015, 127 (3A) : A113 - A117
  • [5] Bifurcation and Chaos in the Logistic Map with Memory
    Alonso-Sanz, Ramon
    Carlos Losada, Juan
    Porras, Miguel A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (12):
  • [6] Chaos in a fractional order logistic map
    Munkhammar, Joakim
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 511 - 519
  • [7] Chaos in a fractional order logistic map
    Joakim Munkhammar
    Fractional Calculus and Applied Analysis, 2013, 16 : 511 - 519
  • [8] PERIODICITY AND CHAOS IN A MODULATED LOGISTIC MAP
    CHOWDHURY, AR
    DEBNATH, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1990, 29 (07) : 779 - 788
  • [9] Quantifying the complexity of the delayed logistic map
    Masoller, Cristina
    Rosso, Osvaldo A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1935): : 425 - 438
  • [10] Chaos synchronization of the discrete fractional logistic map
    Wu, Guo-Cheng
    Baleanu, Dumitru
    SIGNAL PROCESSING, 2014, 102 : 96 - 99