A graphene/ ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells

被引:138
|
作者
Tavakoli, Mohammad Mahdi [1 ,2 ]
Tavakoli, Rouhollah [2 ]
Yadav, Pankaj [3 ]
Kong, Jing [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Sharif Univ Technol, Dept Mat Sci & Engn, Tehran 14588, Iran
[3] Pandit Deendayal Petr Univ, Dept Solar Energy, Gandhinagar 380007, India
关键词
ZINC-OXIDE; INTERFACE; PERFORMANCE; FILMS; NANOSTRUCTURE; DEPOSITION; IODIDE;
D O I
10.1039/c8ta10857a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interface engineering in organometal halide perovskite solar cells (PSCs) has been an efficient tool to boost the performance and stability of photovoltaic (PV) devices. It is known that zinc oxide (ZnO) is one of the promising electron transporting layers for solar cells and is also applicable for flexible devices. However, the utilization of ZnO in PSCs is restricted due to its reactivity with the perovskite film during the annealing process. Here, we demonstrate improved photovoltaic performance and stability by introducing monolayer graphene (MLG) at the interface of the ZnO ETL and perovskite absorber, which results in a stable electric to power conversion efficiency (PCE) of 19.81%. The device based on this modified ETL maintains more than 80% of its initial PCE value after 300h under continuous illumination. Interestingly, we find that the presence of MLG at the ETL/perovskite interface not only improves the carrier extraction and photovoltaic properties but also protects the perovskite film from decomposition at elevated temperatures, which is beneficial for the stability of the device. To improve the stability even further, we have passivated the surface of the perovskite film by using a new modulator, i.e., 3-(pentafluorophenyl)-propionamide (PFPA) to abate the surface trap states of the perovskite. Based on our modification with MLG and PFPA, a stable PSC device with a PCE of 21% was achieved under AM 1.5G illumination with negligible hysteresis. The stability result indicates that the passivated device on MLG/ZnO maintains 93% of its initial PCE value after 300 h under continuous illumination.
引用
收藏
页码:679 / 686
页数:8
相关论文
共 50 条
  • [1] Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells
    Byranvand, Mahdi Malekshahi
    Saliba, Michael
    [J]. SOLAR RRL, 2021, 5 (08):
  • [2] Efficient and Environmentally Stable Perovskite Solar Cells Based on ZnO Electron Collection Layer
    Song, Jiaxing
    Bian, Ji
    Zheng, Enqiang
    Wang, Xiao-Feng
    Tian, Wenjing
    Miyasaka, Tsutomu
    [J]. CHEMISTRY LETTERS, 2015, 44 (05) : 610 - 612
  • [3] Liq interlayer as electron extraction layer for highly efficient and stable perovskite solar cells
    An, Kunsik
    Kim, Jaehoon
    Yoon, Beomhee
    Lee, Hyunho
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (05) : 5745 - 5755
  • [4] Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells with ZnO as Electron-Transport Layer: Effect of Surface Passivation
    Cao, Jing
    Wu, Binghui
    Chen, Ruihao
    Wu, Youyunqi
    Hui, Yong
    Mao, Bing-Wei
    Zheng, Nanfeng
    [J]. ADVANCED MATERIALS, 2018, 30 (11)
  • [5] Superhalogen Passivation for Efficient and Stable Perovskite Solar Cells
    Kim, Hobeom
    Lim, Jaekeun
    Sohail, Muhammad
    Nazeeruddin, Mohammad Khaja
    [J]. SOLAR RRL, 2022, 6 (07)
  • [6] Defect Passivation Using Trichloromelamine for Highly Efficient and Stable Perovskite Solar Cells
    Niu, Qiaoli
    Zhang, Ling
    Xu, Yao
    Yuan, Chaochao
    Qi, Weijie
    Fu, Shuai
    Ma, Yuhui
    Zeng, Wenjin
    Xia, Ruidong
    Min, Yonggang
    [J]. POLYMERS, 2022, 14 (03)
  • [7] Perovskite Passivation Strategies for Efficient and Stable Solar Cells
    Li, Cong
    Li, Huan
    Zhu, Zhinan
    Cui, Nuanyang
    Tan, Zhan'ao
    Yang, Rusen
    [J]. SOLAR RRL, 2021, 5 (01)
  • [8] Surface passivation by CTAB toward highly efficient and stable perovskite solar cells
    Sha, Nian
    Bala, Hari
    Zhang, Bowen
    Zhang, Wei
    An, Xiangli
    Chen, Diandian
    Zhao, Zhiyong
    [J]. APPLIED SURFACE SCIENCE, 2023, 635
  • [9] Highly efficient and stable perovskite solar cells via bilateral passivation layers
    Wang, Tun
    Cheng, Zhendong
    Zhou, Yulin
    Liu, Hong
    Shen, Wenzhong
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (38) : 21730 - 21739
  • [10] Surface passivation of perovskite with organic hole transport materials for highly efficient and stable perovskite solar cells
    Fu, Yajie
    Li, Yang
    Xing, Guichuan
    Cao, Derong
    [J]. MATERIALS TODAY ADVANCES, 2022, 16