CONVERGENCE OF THE J-FLOW ON TORIC MANIFOLDS

被引:0
|
作者
Collins, Tristan C. [1 ]
Szekelyhidi, Gabor [2 ]
机构
[1] Harvard Univ, Dept Math, One Oxford St, Cambridge, MA 02138 USA
[2] Univ Notre Dame, Dept Math, 277 Hurley, South Bend, IN USA
基金
美国国家科学基金会;
关键词
NONLINEAR ELLIPTIC-EQUATIONS; COMPACT KAHLER MANIFOLD; MABUCHI ENERGY; DIRICHLET PROBLEM; RICCI CURVATURE; STABILITY; GEOMETRY; COMPLEX;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that on a Kahler manifold whether the J-flow converges or not is independent of the chosen background metric in its Kahler class. On toric manifolds we give a numerical characterization of when the J-flow converges, verifying a conjecture in [19] in this case. We also strengthen existing results on more general inverse sigma(k) equations on Kahler manifolds.
引用
收藏
页码:47 / 81
页数:35
相关论文
共 50 条