Digital mapping of soil organic carbon stocks in the forest lands of Dominican Republic

被引:17
|
作者
Duarte, Efrain [1 ,2 ]
Zagal, Erick [1 ]
Barrera, Juan A. [1 ]
Dube, Francis [3 ]
Casco, Fabio [4 ]
Hernandez, Alexander J. [5 ]
机构
[1] Univ Concepcion, Fac Agron, Dept Soils & Nat Resources, Vicente Mendez 595,Casilla 537, Chillan 3812120, Chile
[2] Univ Concepcion, Fac Agron, Chillan, Chile
[3] Univ Concepcion, Fac Forest Sci, Dept Silviculture, Concepcion, Chile
[4] Food & Agr Org FAO United Nations, IR3 Initiat, Tegucigalpa, Honduras
[5] Utah State Univ, USDA, ARS, Logan, UT 84322 USA
关键词
Random forest; landsat; machine learning; tropical forest; environmental covariates; Google Earth Engine; VEGETATION; IMAGES; DEFORESTATION; FRACTIONS; EMISSIONS; REGIONS; INDEX; MAP;
D O I
10.1080/22797254.2022.2045226
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Mapping the spatial distribution of soil organic carbon (SOC) in lands covered by tropical forests is important to understand the relationship and dynamics of SOC in this type of ecosystem. In this study, the Random Forest (RF) algorithm was used to map SOC stocks of topsoil (0-15 cm) in forest lands of the Dominican Republic. The methodology was developed using geospatial datasets available in the Google Earth Engine (GEE) platform combined with a set of 268 soil samples. Twenty environmental covariates were analyzed, including climate, topography, and vegetation. The results indicate that Model A (combining all 20 covariates) was only marginally better than Model B (combining topographic and climatic covariates), and Model C (only combining multispectral remote sensing data derived from Landsat 8 OLI images). Model A and Model B yielded SOC mean values of 110.35 and 110.87 Mg C ha(-1), respectively. Model A reported the lowest prediction error and uncertainty with an R-2 of 0.83, an RMSE of 35.02 Mg C ha(-1). There was a strong dependence of SOC stocks on multispectral remote sensing data. Therefore, multispectral remote sensing proved accurate to map SOC stocks in forest ecosystems in the region.
引用
收藏
页码:213 / 231
页数:19
相关论文
共 50 条
  • [1] Predictors for digital mapping of forest soil organic carbon stocks in different types of landscape
    Boruvka, Lubos
    Vasat, Radim
    Sramek, Vit
    Hellebrandova, Katerina Neudertova
    Fadrhonsova, Vera
    Sanka, Milan
    Pavlu, Lenka
    Sanka, Ondrej
    Vacek, Oldrich
    Nemecek, Karel
    Nozari, Shahin
    Sarkodie, Vincent Yaw Oppong
    [J]. SOIL AND WATER RESEARCH, 2022, 17 (02) : 69 - 79
  • [2] Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark
    Adhikari, Kabindra
    Hartemink, Alfred E.
    Minasny, Budiman
    Kheir, Rania Bou
    Greve, Mette B.
    Greve, Mogens H.
    [J]. PLOS ONE, 2014, 9 (08):
  • [3] Digital soil mapping of soil organic carbon stocks in Western Ghats, South India
    Dharumarajan, S.
    Kalaiselvi, B.
    Suputhra, Amar
    Lalitha, M.
    Vasundhara, R.
    Kumar, K. S. Anil
    Nair, K. M.
    Hegde, Rajendra
    Singh, S. K.
    Lagacherie, Philippe
    [J]. GEODERMA REGIONAL, 2021, 25
  • [4] Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalisation
    Ottoy, Sam
    De Vos, Bruno
    Sindayihebura, Anicet
    Hermy, Martin
    Van Orshoven, Jos
    [J]. ECOLOGICAL INDICATORS, 2017, 77 : 139 - 150
  • [5] Predicting soil organic carbon stocks in different layers of forest soils in the Czech Republic
    Sarkodie, Vincent Yaw Oppong
    Vasat, Radim
    Pouladi, Nastaran
    Sramek, Vit
    Sanka, Milan
    Fadrhonsova, Vera
    Hellebrandova, Katerina Neudertova
    Boruvka, Lubos
    [J]. GEODERMA REGIONAL, 2023, 34
  • [6] Influence of forest management on soil organic carbon stocks
    Labeda, Damian
    Kondras, Marek
    [J]. SOIL SCIENCE ANNUAL, 2020, 71 (02) : 165 - 173
  • [7] Mapping soil organic carbon stocks in Tunisian topsoils
    Bahri, Haithem
    Raclot, Damien
    Barbouchi, Meriem
    Lagacherie, Philippe
    Annabi, Mohamed
    [J]. GEODERMA REGIONAL, 2022, 30
  • [8] Modelling and mapping soil organic carbon stocks in Brazil
    Gomes, Lucas Carvalho
    Faria, Raiza Moniz
    de Souza, Eliana
    Veloso, Gustavo Vieira
    Schaefer, Carlos Ernesto G. R.
    Fernandes Filho, Elpidio Inacio
    [J]. GEODERMA, 2019, 340 : 337 - 350
  • [9] Soil Fungi and Soil Organic Carbon Stocks in the Profile of a Forest Arenosol
    Ankuda, Jelena
    Sivojiene, Diana
    Armolaitis, Kestutis
    Jakutis, Audrius
    Aleinikoviene, Jurate
    Drapanauskaite, Donata
    Marozas, Vitas
    Mishcherikova, Valeriia
    Stakenas, Vidas
    Mikryukov, Vladimir
    Tedersoo, Leho
    [J]. DIVERSITY-BASEL, 2024, 16 (01):
  • [10] Measuring and monitoring soil organic carbon stocks in agricultural lands for climate mitigation
    Conant, Richard T.
    Ogle, Stephen M.
    Paul, Eldor A.
    Paustian, Keith
    [J]. FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, 2011, 9 (03) : 169 - 173