ON ERROR ANALYSIS FOR THE 3D NAVIER-STOKES EQUATIONS IN VELOCITY-VORTICITY-HELICITY FORM

被引:17
|
作者
Lee, Hyesuk K. [1 ]
Olshanskii, Maxim A. [2 ]
Rebholz, Leo G. [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119899, Russia
基金
美国国家科学基金会;
关键词
Navier-Stokes; velocity-vorticity; helicity; finite element method; nonhomogeneous boundary conditions; INCOMPRESSIBLE-FLOW; FORMULATION; DIVERGENCE; TURBULENCE; ALGORITHM; EVOLUTION;
D O I
10.1137/10080124X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a rigorous numerical analysis and computational tests for the Galerkin finite element discretization of the velocity-vorticity-helicity formulation of the equilibrium Navier-Stokes equations (NSEs). This formulation, recently derived by the authors, is the first NSE formulation that directly solves for helicity and the first velocity-vorticity formulation to naturally enforce incompressibility of the vorticity, and preliminary computations confirm its potential. We present a numerical scheme; prove stability, existence of solutions, uniqueness under a small data condition, and convergence; and provide numerical experiments to confirm the theory and illustrate the effectiveness of the scheme on a benchmark problem.
引用
收藏
页码:711 / 732
页数:22
相关论文
共 50 条