Decision thresholding on fMRI activation maps using the Hilbert-Huang transform

被引:0
|
作者
Kuo, Po-Chih [1 ]
Liou, Michelle [2 ]
机构
[1] Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu, Taiwan
[2] Acad Sinica, Inst Stat Sci, Taipei, Taiwan
关键词
fMRI; non-stationary; Hilbert-Huang transform; EMD; threshold; EMPIRICAL MODE DECOMPOSITION; TIME-SERIES; NOISE; INFERENCES;
D O I
10.1088/1741-2552/ac7f5e
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Functional magnetic resonance imaging (fMRI) requires thresholds by which to identify brain regions with significant activation, particularly for experiments involving real-life paradigms. One conventional non-parametric approach to generating surrogate data involves decomposition of the original fMRI time series using the Fourier transform, after which the phase is randomized without altering the magnitude of individual frequency components. However, it has been reported that spontaneous brain signals could be non-stationary, which, if true, could lead to false-positive results. Approach. This paper introduces a randomization procedure based on the Hilbert-Huang transform by which to account for non-stationarity in fMRI time series derived from two fMRI datasets (stationary or non-stationary). The significance of individual voxels was determined by comparing the distribution of empirical data versus a surrogate distribution. Main results. In a comparison with conventional phase-randomization and wavelet-based permutation methods, the proposed method proved highly effective in generating activation maps indicating essential brain regions, while filtering out noise in the white matter. Significance. This work demonstrated the importance of considering the non-stationary nature of fMRI time series when selecting resampling methods by which to probe brain activity or identify functional networks in real-life fMRI experiments. We propose a statistical testing method to deal with the non-stationarity of continuous brain signals.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Generator Coherency Using the Hilbert-Huang Transform
    Senroy, Nilanjan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2008, 23 (04) : 1701 - 1708
  • [2] Defining an estuary using the Hilbert-Huang transform
    Chen, Yen-Chang
    Kao, Su-Pai
    Chiang, Hsiao-Wen
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2013, 58 (04): : 841 - 853
  • [3] Hilbert-Huang Transform and the Application
    Liu, Yi
    An, Hao
    Bian, Shuangshuang
    PROCEEDINGS OF 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS), 2020, : 534 - 539
  • [4] The summary of Hilbert-Huang transform
    Song Shi-De
    Yao Zhi-chao
    Wang Xiao-na
    INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2013: INFRARED IMAGING AND APPLICATIONS, 2013, 8907
  • [5] Analysis of cardiac abnormalities using Hilbert-Huang transform
    Sikkandar, Mohamed Yacin
    Akshayaa, V.
    Dinesh, Acharya Divya
    Sree, L. Dinikshaa
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2013, 13 (01) : 69 - 86
  • [6] Estimation of Teager energy using the Hilbert-Huang transform
    Thuraisingham, Ranjit A.
    IET SIGNAL PROCESSING, 2015, 9 (01) : 82 - 87
  • [7] Classification of Ingestion Sounds Using Hilbert-Huang Transform
    Turan, M. A. Tugtekin
    Erzin, Engin
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [8] Hilbert-Huang Transform in Fault Detection
    German-Sallo, Zoltan
    Grif, Horatiu Stefan
    12TH INTERNATIONAL CONFERENCE INTERDISCIPLINARITY IN ENGINEERING (INTER-ENG 2018), 2019, 32 : 591 - 595
  • [9] An algorithm for improving Hilbert-Huang transform
    Guo, Song
    Gu, Guochang
    Li, Changyou
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 137 - +
  • [10] Modulation Classification By Hilbert-Huang Transform
    Tanc, Yesim Hekim
    Akan, Aydm
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,