Gate-tunable Thermoelectric Effects in a Graphene/WS2 van der Waals Heterostructure

被引:6
|
作者
Lee, Junho [1 ]
Son, Minsol [1 ]
Jeong, Hyebin [1 ]
Sim, Injip [1 ]
Myoung, Nojoon [1 ]
机构
[1] Chosun Univ, Dept Phys Educ, Gwangju 61452, South Korea
关键词
Graphene; van der Waals Heterostructures; Thermoelectric effects; Seebeck coefficient; Tunnel junction; TRANSPORT; EMISSION; GAS; BN;
D O I
10.3938/jkps.73.940
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Thermoelectric effects of Dirac fermions through a van der Waals (vdW) heterostructure consisting of graphene and tungsten diselenide (WS2) are theoretically investigated. When the lattice temperature of the top graphene layer differs from that of the bottom graphene layer, thermally excited Dirac fermions can be transferred through the WS2 layer, generating tunnel current. This thermoelectric tunnel current shows drastic changes in its characteristics as a consequence of gatevoltage tuning. The thermoelectric power of the proposed graphene-WS2 vdW heterostructure is characterized by examining the Seebeck coefficient.
引用
收藏
页码:940 / 944
页数:5
相关论文
共 50 条
  • [1] Gate-tunable Thermoelectric Effects in a Graphene/WS2 van der Waals Heterostructure
    Junho Lee
    Minsol Son
    Hyebin Jeong
    Injip Sim
    Nojoon Myoung
    Journal of the Korean Physical Society, 2018, 73 : 940 - 944
  • [2] Plasmonic WS2 Nanodiscs/Graphene van der Waals Heterostructure Photodetectors
    Alamri, Mohammed
    Gong, Maogang
    Cook, Brent
    Goul, Ryan
    Wu, Judy Z.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (36) : 33390 - 33398
  • [3] Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS2 van der Waals Heterojunction Diode
    Dastgeer, Ghulam
    Khan, Muhammad Farooq
    Nazir, Ghazanfar
    Afzal, Amir Muhammad
    Aftab, Sikandar
    Naqvi, Bilal Abbas
    Cha, Janghwan
    Min, Kyung-Ah
    Jami, Yasir
    Jung, Jongwan
    Hong, Suklyun
    Eom, Jonghwa
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (15) : 13150 - 13157
  • [4] Tunable van der Waals Doping in WS2/CrOCl Heterostructure by Interlayer Coupling Engineering
    Liu, Dongdong
    Zhou, Yu
    Zheng, Shengqian
    Liu, Xiaochi
    Sun, Jian
    Li, Zhuolun
    Zhang, Zhenxiao
    Zhang, Zhineng
    Wang, Shaolong
    Cai, Dongyu
    Cheng, Yingchun
    Huang, Wei
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (07) : 3973 - 3980
  • [5] Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor
    Wang, Chen-Yu
    Liang, Shi-Jun
    Wang, Shuang
    Wang, Pengfei
    Li, Zhu'an
    Wang, Zhongrui
    Gao, Anyuan
    Pan, Chen
    Liu, Chuan
    Liu, Jian
    Yang, Huafeng
    Liu, Xiaowei
    Song, Wenhao
    Wang, Cong
    Wang, Xiaomu
    Chen, Kunji
    Wang, Zhenlin
    Watanabe, Kenji
    Taniguchi, Takashi
    Yang, J. Joshua
    Miao, Feng
    Cheng, Bin
    SCIENCE ADVANCES, 2020, 6 (26)
  • [6] Van der Waals twistronics in a MoS2/WS2 heterostructure
    Sachin, Saurav
    Kumari, Puja
    Gupta, Neelam
    Rani, Shivani
    Kar, Subhasmita
    Ray, Soumya Jyoti
    COMPUTATIONAL CONDENSED MATTER, 2023, 35
  • [7] Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure
    Li, Ziqi
    Cheng, Chen
    Dong, Ningning
    Romero, Carolina
    Lu, Qingming
    Wang, Jun
    Vazquez de Aldana, Javier Rodriguez
    Tan, Yang
    Chen, Feng
    PHOTONICS RESEARCH, 2017, 5 (05) : 406 - 410
  • [8] Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure
    ZIQI LI
    CHEN CHENG
    NINGNING DONG
    CAROLINA ROMERO
    QINGMING LU
    JUN WANG
    JAVIER RODRíGUEZ VáZQUEZ DE ALDANA
    YANG TAN
    FENG CHEN
    Photonics Research, 2017, 5 (05) : 406 - 410
  • [9] Gate-tunable van der Waals heterostructure based on semimetallic WTe2 and semiconducting MoTe2
    Xie, Yuan
    Wu, Enxiu
    Geng, Guangyu
    Zhang, Daihua
    Hu, Xiaodong
    Liu, Jing
    APPLIED PHYSICS LETTERS, 2021, 118 (13)
  • [10] Interlayer Trions in the MoS2/WS2 van der Waals Heterostructure
    Deilmann, Thorsten
    Thygesen, Kristian Sommer
    NANO LETTERS, 2018, 18 (02) : 1460 - 1465