A Maximal Local Maximum-Sum Segment Data Structure

被引:0
|
作者
Sakai, Yoshifumi [1 ]
机构
[1] Tohoku Univ, Grad Sch Agr Sci, Sendai, Miyagi 9808572, Japan
关键词
algorithms; sequence of real numbers; maximum-sum segment;
D O I
10.1587/transfun.E101.A.1541
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A linear-time constructible data structure for a real number sequence supporting O(1)-time queries of the maximal local maximum-sum segment of any contiguous subsequence containing any specific position is proposed, where a local maximum-sum segment is a segment whose maximum-sum segment is itself.
引用
收藏
页码:1541 / 1542
页数:2
相关论文
共 50 条
  • [1] On the range maximum-sum segment query problem
    Chen, Kuan-Yu
    Chao, Kun-Mao
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (16) : 2043 - 2052
  • [2] On the range maximum-sum segment query problem
    Chen, KY
    Chao, KM
    [J]. ALGORITHMS AND COMPUTATION, 2004, 3341 : 294 - 305
  • [3] An optimal algorithm for maximum-sum segment and its application in bioinformatics
    Fan, TH
    Lee, SF
    Lu, HI
    Tsou, TS
    Wang, TC
    Yao, A
    [J]. IMPLEMENTATION AND APPLICATION OF AUTOMATA, PROCEEDINGS, 2003, 2759 : 251 - 257
  • [4] Optimal algorithms for the average-constrained maximum-sum segment problem
    Cheng, Chih-Huai
    Liu, Hsiao-Fei
    Chao, Kun-Mao
    [J]. INFORMATION PROCESSING LETTERS, 2009, 109 (03) : 171 - 174
  • [5] On maximum-sum matchings of points
    Bereg, Sergey
    Chacon-Rivera, Oscar P.
    Flores-Penaloza, David
    Huemer, Clemens
    Perez-Lantero, Pablo
    Seara, Carlos
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (01) : 111 - 128
  • [6] On maximum-sum matchings of points
    Sergey Bereg
    Oscar P. Chacón-Rivera
    David Flores-Peñaloza
    Clemens Huemer
    Pablo Pérez-Lantero
    Carlos Seara
    [J]. Journal of Global Optimization, 2023, 85 : 111 - 128
  • [7] Center of maximum-sum matchings of bichromatic points
    Perez-Lantero, Pablo
    Seara, Carlos
    [J]. DISCRETE MATHEMATICS, 2024, 347 (03)
  • [8] Calculational Developments of New Parallel Algorithms for Size-Constrained Maximum-Sum Segment Problems
    Morihata, Akimasa
    [J]. FUNCTIONAL AND LOGIC PROGRAMMING (FLOPS 2012), 2012, 7294 : 213 - 227
  • [9] Finding a length-constrained maximum-sum or maximum-density subtree and its application to logistics
    Lau, Hoong Chuin
    Ngo, Trung Hieu
    Nguyen, Bao Nguyen
    [J]. DISCRETE OPTIMIZATION, 2006, 3 (04) : 383 - 389
  • [10] Detection Using Hilbert Envelope for Glottal Excitation Enhancement and Maximum-Sum Subarray for Epoch Marking
    Dasgupta, Hirak
    Pandey, Prem C.
    Nataraj, K. S.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (02) : 461 - 471